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Abstract—Stochastic allocation of resources in the context of
wireless systems ultimately demands reactive decision making
for meaningfully optimizing network-wide random utilities, while
respecting certain resource constraints. Standard ergodic-optimal
policies are however susceptible to the statistical variability of
fading, often leading to systems which are severely unreliable and
spectrally wasteful. On the flip side, minimax/outage-optimal poli-
cies are too pessimistic and often hard to determine. We propose a
new risk-aware formulation of the resource allocation problem for
standard multi-user point-to-point power-constrained communi-
cation with no cross-interference, by employing the Conditional
Value-at-Risk (CV@R) as a measure of fading risk. A remarkable
feature of this approach is that it is a convex generalization of the
ergodic setting while inducing robustness and reliability in a fully
tunable way, thus bridging the gap between the (naive) ergodic
and (conservative) minimax approaches. We provide a closed-
form expression for the CV@R-optimal policy given primal/dual
variables, extending the classical stochastic waterfilling policy. We
then develop a primal-dual tail-waterfilling scheme to recursively
learn a globally optimal risk-aware policy. The effectiveness of
the approach is verified via detailed simulations.

Index Terms—Resource Allocation, Waterfilling, Conditional
Value-at-Risk (CV@R), Risk-Aware Optimization.

I. INTRODUCTION

We revisit the classical problem of allocating resources in
point-to-point communication networks operating over real-
izations of random fading channels h ∈ H ⊆ Rn. Resources
such as transmission power and/or channel access are allotted
among users to meaningfully optimize certain network-wide
random utilities. Traditionally, such resources are allocated ei-
ther deterministically by essentially disregarding the statistical
variability of fading as an integral characteristic of the system,
including minimax formulations [1], [2], or stochastically in
an ergodic sense by considering performance averages [2]–[6],
i.e., expectations of random network objectives in an attempt
to optimize performance in the “long-term”.

However, being optimal in expectation, ergodic stochastic
resource allocation lacks the ability to effectively quantify
relatively infrequent though statistically significant fading
events causing performance drops, e.g., deep(er) fades. Indeed,
the statistical dispersion of a communication medium with
a fatter-tailed distribution is quite likely to result in rather
undesirable channel realizations, leading to potentially major
service losses. This happens because expectations of random
services do not capture such risky tail events. In other words,
ergodic-optimal resource allocation policies are risk-neutral.
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In fact, it is well-known that optimal ergodic policies are
often channel-opportunistic [3], and prone to sporadic channel
realizations that negatively affect performance, leading to
unreliable systems suffering from substantial spectrum un-
derutilization. On the other extent, minimax-type (sometimes
called “robust”) resource policies aim for maximally reliable
system performance [1], [2]. Still, such policies are known
for being overcautious and for achieving conservative system
performance, on top of the often unreasonable difficulty of the
resulting optimization problems.

While approaches based on outage probability optimization
try to bridge the two extremes [7], they exhibit counterfactual
issues: Outage probability targets required for performing allo-
cation of resources might not even be feasible to begin with,
and even if they are, they might not result in operationally
meaningful performance. Quantile-based resource allocation,
such as outage rate/capacity optimization, aims for alleviating
those issues, however the resulting problems still suffer from
other limitations, mainly related to interpretability and lack of
favorable structure (e.g., convexity).

In this paper, we introduce a risk-aware formulation of the
resource allocation problem –such ideas/approaches have re-
cently started getting traction [8]–[10]– for standard multi-user
point-to-point resource-constrained communication with no
cross-interference, by capitalizing on the Conditional Value-at-
Risk (CV@R) [11] as a measure of fading risk. CV@R, deeply
rooted in mathematical finance, is a coherent risk measure
[12], trades naturally between the (naive) ergodic and (conser-
vative) minimax settings, and allows formulating the proposed
risk-aware problem as a convex, well-structured extension of
its ergodic counterpart, liberated from counterfactual issues
and inducing robustness and reliability in a fully tunable way.

After obtaining a closed-form expression for the optimal
Lagrangian-relaxed CV@R policy, we propose the tail water-
filling algorithm, a primal-dual scheme to learn a globally op-
timal risk-aware policy in a recursive fashion. Indeed, tail wa-
terfilling continuously extends classical stochastic waterfilling
[13] to the risk-aware universe. We present detailed numerical
simulations, empirically corroborating the effectiveness of our
approach for two standard utilities, namely, weighted sumrate
and proportional fairness.

II. SYSTEM MODEL

We consider a n-terminal parallel point-to-point communi-
cation channel model; some examples of relevant networking
scenarios may be visualized as in Fig. 1. We assume perfect



Fig. 1: Examples of multi-user one-to-one communication channels. Left:
Multiplexed (e.g., time or frequency) star uplink or downlink model. Right:
Classical parallel channel model.

channel state information (CSI) at transmission time (mainly
for simplicity), which is leveraged to allocate resources via a
policy p(h), where h is the channel fading vector. The rate
for terminal or user i = 1, . . . , n in the network is

ri(pi(hi), hi) ≜ log

(
1 +

hipi(hi)

σ2
i

)
, (1)

where σ2
i > 0 is the noise variance of the corresponding link.

Under this setting, optimal resource allocation in an ergodic
sense may be achieved by solving the convex problem [3]

maximize
x∈X ,p⪰0

f0(x)

subject to x ⪯ E [r(p(h),h)]

∥E [p(h)]∥1 ≤ P0

, (2)

where f0 is a given concave utility, x is the mean-ergodic rate
vector, X is a convex set, r is the instantaneous rate vector,
and P0 is a total mean power budget. Problem (2) is very well-
studied; in fact, a globally optimal solution may be obtained
via the well-known (stochastic) waterfilling algorithm [13],
which is the same as (stochastic) dual descent [3]. However,
as mentioned in Section I, it is also known that optimal policies
obtained by solving (2) are channel-opportunistic, unavoidably
leading to systems which are severely unreliable and spectrally
wasteful. This is because of the risk-neutral quantification of
channel uncertainty in (2), which discards information about
the higher-order or tail behavior of the rate as a function of
random fading. On the other hand, minimax-optimal policies
or policies minimizing outage probabilities are either overly
pessimistic [7], or result in problems that are difficult to
handle, or suffer from counterfactual issues.

To effectively address those shortcomings, we take a funda-
mentally distinct approach to stochastic resource allocation by
replacing the expectation of rates in (2) by a (vector) risk
measure [12], specifically the CV@R [11], defined for an
integrable random cost z as

CV@Rα[z] ≜ inf
t∈R

t+
1

α
E[(z − t)+], (3)

where α ∈ (0, 1] is the corresponding confidence level. CV@R
is a strict and tractable generalization of expectation, because

CV@R1[z] = E[z] ≤ CV@Rα[z], ∀α ∈ (0, 1] and

CV@R0[z] ≜ lim
α↓0

CV@Rα[z] = esssup z. (4)
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Fig. 2: R1 = −CV@Rα[−z] (blue) and R2 = CV@Rα[z] (red) calculated
at level α = 0.6, for a Rayleigh distributed z with scale σ = 1.

Intuitively, CV@R measures expected losses restricted to the
upper tail of z of probability equal to α; see Fig. 2. Therefore,
it provides an interpretable and tunable tradeoff bridging risk-
neutrality and minimax robustness.

To make CV@R suitable for maximizing rewards –cf. (2)–
rather than minimizing losses, it is sufficient to reflect it as

−CV@Rα[−z] = sup
t∈R

t− 1

α
E[(t− z)+], (5)

now measuring expected rewards restricted to the lower tail of
z of probability equal to α; again, see Fig. 2 for a comparison.
Using (5), we may formulate our proposed risk-aware resource
allocation problem as

P ∗ = maximize
x∈X ,p⪰0

f0(x)

subject to x ⪯ −CV@Rα [−r(p(h),h)]

∥E [p(h)]∥1 ≤ P0

, (6)

where x is now interpreted as a risk-ergodic rate vector, and
the vector operator CV@Rα[·] with a confidence level vector
α evaluates the risk of the corresponding rate vector in an
elementwise manner. Note that we have tacitly not enforced
risk-aware behavior on the policy itself (resource constraint),
as this is operationally unnecessary. It is a standard exercise
to show that problem (6) can be equivalently expressed as

P ∗ = maximize
x∈X ,p⪰0,t

f0(x)

subject to x ⪯ t− 1

α
⊙ E [(t− r(p(h),h))+]

∥E [p(h)]∥1 ≤ P0

, (7)

where “⊙” stands for elementwise multiplication, while (·)+
and division with a vector are similarly overloaded.

Observe that problem (6) is infinite-dimensional; in general
such problems are challenging to tackle. Nonetheless, CV@R
is a convex and monotone (in fact, coherent) risk measure [12],
which preserves the convexity of both (6) and (7). Therefore,
under the effect of some appropriate constraint qualification,
such as Slater’s condition –assumed hereafter–, problems (6)
and (7) exhibit no duality gap (in fact, strong duality). This
fact suggests that we handle (7) in the dual domain, i.e., within
the framework of Lagrangian duality.



III. LAGRANGIAN DUALITY

The Lagrangian of problem (7) is defined as

L(x,p, t,Λ, µ)
≜ f0(x) + µ (P0 − ∥E [p(h)]∥1)

+ ΛT

[
t− 1

α
⊙ E [(t− r(p(h),h))+]− x

]
,

(8)

where Λ ⪰ 0 and µ ≥ 0 are the dual variables associated with
the explicit constraints of (7). Accordingly, the dual function
is defined as the maximization of the Lagrangian function over
the primal variable triplet (x,p, t), i.e.,

D(Λ, µ) = sup
x∈X ,p⪰0,t

L(x,p, t,Λ, µ). (9)

Subsequently, the dual problem is the minimization of the dual
function over the dual variable pair (Λ, µ), i.e.,

D∗ = inf
(Λ,µ)⪰0

D(Λ, µ),

= inf
(Λ,µ)⪰0

sup
x∈X ,p⪰0,t

L(x,p, t,Λ, µ).
(10)

As mentioned previously, problem (7) exhibits strong duality
(under Slater’s condition), which means that P ∗ = D∗ and,
what is more, optimal dual variables are guaranteed to exist.
We also observe that even though problem (7) is infinite-
dimensional, its dual (10) is finite-dimensional, which is a very
useful fact if we are able to tackle the maximization involved
in the dual function (9) –in particular over p– adequately.

Leveraging strong duality, we hereafter focus on devising
an efficient primal-dual algorithm for solving the minimax
problem (10), hopefully providing an optimal solution to the
constrained convex risk-aware problem (7), as well [3].

IV. RISK-AWARE RESOURCE ALLOCATION:
THE TAIL WATERFILLING ALGORITHM

The dual problem can be separated into several subproblems
with respect to the primal variables. In particular, (10) can be
equivalently expressed as

inf
(Λ,µ)⪰0

{
µP0 + sup

x∈X
f0(x)− ΛTx+ sup

t

n∑
i=1

λiti

+E

[
sup
pi≥0

−µpi −
λi

αi

(
ti − ri(pi(hi), hi)

)
+

]}
,

(11)

where interchanging the sup over p with expectation (integra-
tion) is justified in light of the interchangeability principle;
see, e.g., [12, Theorem 7.92]. This fact allows us to derive an
optimal policy in closed-form.

A. Optimal Resource Policy

The particular policy subproblem for each user i is

sup
pi≥0

−µpi −
λi

αi

(
ti − log

(
1 +

hipi
σ2
i

))
+

. (12)

The next result provides an optimal solution of subproblem
(12), determining the behavior of the optimal risk-aware policy
p∗(h), parameterized by primal/dual variables (t,Λ, µ).
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Fig. 3: Optimal resource policies for risk-aware (RA, solid) and risk-neutral
(RN, dashed) settings in a 3-user network, with µ = 0.07, αi = 0.53 and
λi = 0.33 for all i, t1 = 2.9, t2 = 2.15 and t3 = 2.45, respectively.

Theorem 1 (Optimal Resource Policy): An optimal solution
to the i-th policy subproblem (12) may be expressed as

p∗i (hi, ·) =


[
λi

µαi
− σ2

i

hi

]
+

, if
λi

µαieti
− σ2

i

hi
< 0

σ2
i (e

ti − 1)

hi
, if

λi

µαieti
− σ2

i

hi
≥ 0

, (13)

whenever µ and λi are not simultaneously zero; otherwise, it
is optimal to choose p∗i (hi) = 0.

The risk-aware policy presented in Theorem 1 is a genuine
extension of the classical risk-neutral waterfilling power policy
[3], [13], which for user i may be expressed as

pNi (hi, ·) =
[
λi

µ
− σ2

i

hi

]
+

. (14)

This reduction is obtained by setting αi = 1, and then sending
the CV@R variable ti to +∞ in (13) (this can be explained
by the construction of the CV@R; see [12, Chapter 6]).

Presence of a confidence level αi ∈ (0, 1) (and the related
rate target ti) makes the policy less opportunistic as compared
with its risk-neutral counterpart. First, power is allocated more
aggressively to more faded channels (smaller values of hi) in
the [·]+-related part of the policy (cf. classical waterfilling),
as αi decreases and the corresponding branch of (13) is active
(also depending on ti). Further, if αi (resp. ti) is small enough
to make the lower branch of (13) active, constant relative to
α but now proportional to ti power equal to σ2

i (e
ti − 1) /hi

is allocated. We observe a striking similarity of this term
to outage-optimal policies; see, e.g., [7]. This might point
to intricate information-theoretic properties of the CV@R
approach, which can be the subject of future investigation.

Second, when the [·]+-related part of the policy is nonpos-
itive, then the policy indeed becomes opportunistic. However,
given relevant (or optimized) values of ti, the opportunism of
the policy is effectively restricted to the lower tail (occuring
with proability equal to αi) of the random rate ri(pi(hi), hi).

These remarks may also be readily observed in Fig. 3. Hav-
ing explicitly determined p∗, we may now derive primal –in
(x, t)– and dual –in (Λ, µ)– iterations, purposed to recursively
learn a globally optimal solution to (7).



B. CV@R Target / Risk-Ergodic Rate Updates–Primal Ascent
The remaining subproblems of (11) relative to primal vari-

ables (x, t) can be solved separately. Regarding maximization
over t, and with p∗i = p∗i (hi, ti, ·), we end up with the problem

sup
ti

E

[
λiti − µp∗i −

λi

αi

(
ti − log

(
1 +

hip
∗
i

σ2
i

))
+

]
, (15)

for each i, where we explicitly denote the dependence of p∗i on
ti. It can be easily seen that the function inside the expectation
of (15) is jointly concave relative to (ti, pi). Therefore, it is
also concave in ti under partial maximization over pi ≥ 0.

By [12, Theorem 7.52], it then follows that every subgradi-
ent of the latter is a stochastic subgradient of the objective of
(15). Due to initial joint concavity in (ti, pi), it can be shown
that such a stochastic subgradient may be selected as

gi(hi, ti, ·) = λi−
λi

αi
H

[
ti− log

(
1+

hip
∗
i (hi, ti, ·)
σ2
i

)]
, (16)

where H(·) is the step (Heaviside) multifunction. Then, pro-
vided an iteration index n ∈ N and processes {hn

i } and {tni }
(and implicitly meant {λn

i } and {µn}; see below), we may
formulate a stochastic subgradient ascent scheme for ti as

tni = tn−1
i + εtgi(h

n
i , t

n−1
i , ·), n ≥ 1, (17)

with stepsize εt > 0, and starting from some initial value t0i .
Maximization over x, on the other hand, depends on the

dual variables Λ and concave utility f0. Hereafter, we assume
that an optimal solution as a function of Λ –or Λn, n ≥ 0–

x∗(Λ) ∈ argmax
x∈X

f0(x)− ΛTx (18)

exists, and f0 is such that x∗(Λn) is available (e.g., in closed
form). Standard derivations and variable eliminations for popu-
lar utility functions, namely, sumrates and proportional fairness
are provided later on, for completeness.

C. Dual Variable Updates
Lastly, we can formulate stochastic (quasi-)subgradient de-

scent updates for dual variables (Λ, µ). This is done along
the lines of [3], by exploiting the corresponding constraint
gaps. Note that the dual function D is convex and separable
in (Λ, µ). For the power constraint multiplier µ, we have

µn =

[
µn−1 − εµ

(
P0 −

n∑
i=1

p∗i (h
n
i , µ

n−1, ·)

)]
+

, (19)

with stepsize εµ > 0, starting from µ0. Similarly, for the rate
constraint vector of multipliers Λ, we get, for each i,

λn
i =

[
λn−1
i − εΛ

(
− x∗

i (Λ
n−1) + tn−1

i (20)

− 1

αi

(
tn−1
i − log

(
1 +

hn
i p

∗
i (h

n
i , λ

n−1
i , ·)

σ2
i

))
+

)]
+

,

with stepsize εΛ > 0, and starting from λ0
i .

The complete description of the proposed primal-dual algo-
rithm, which we suggestively call tail waterfilling, is presented
in Algorithm 1.

Algorithm 1 Tail Waterfilling
Choose initial values t0,p0,x0, µ0,Λ0.
for n = 1 to Process End do

Observe hn.
# Primal Variables
→ Set p∗i (·) using (13), for all i.
→ Update tni using (17) and (16), for all i.
→ Obtain x∗(Λn−1) from (18).
# Dual Variables
→ Update µn using (19).
→ Update λn

i using (20), for all i.
end for

D. Common Utilities

Sumrate: If f0(x) = wTx, w ⪰ 0, x ∈ Rn, the subproblem
relative to x becomes supx (w−Λ)Tx, which is unbounded
for any w and Λ, except for the optimal dual choice Λ = w.
Of course, this step eliminates both variables x and Λ.

Proportional Fairness: In this case, we can choose f0(x) =∑n
i=1 log(xi), x ∈ Rn, and the subproblem in x becomes

sup
x

n∑
i=1

log(xi)− ΛTx = sup
x

n∑
i=1

log(xi)− λixi, (21)

which gives x∗
i = 1/λi for each i.

V. PERFORMANCE EVALUATION

Let us now verify and discuss the efficacy of the proposed
tail waterfilling algorithm, summarized in Algorithm 1. We
consider a basic 3-terminal network consisting of Rayleigh
fading point-to-point links with different noise variances. We
then apply the tail waterfilling scheme for two utilities, namely,
sumrate and proportional fairness. For the sumrate utility, the
weights w are selected to average the individual risk-ergodic
services xi per terminal, i.e., wi = 1/3,∀i. For both utilities,
the stepsizes are set as εt = 10−3 and εµ = 10−4, respectively.
For proportional fairness, we set εΛ = 10−4.

As shown in the histograms of Figs. 4 (top) and 6 (top),
decreasing the (common) CVaR level α restricts the achievable
rates in program (6), while constraining their volatility. This
induces system robustness, since the system sustains a consis-
tent and reliable level of performance, incurring infrequent rate
drops in the long-term. Especially for proportional fairness, we
observe that, simultaneously with being robust, the rates are
more fairly distributed among users with different noise levels.

Equivalent remarks are in order regarding Figs. 4 (bottom)
and 6 (bottom), which show the user outage probabilities, i.e.,
the cumulative distribution function Pout(ro) = P{r ≤ ro},
as another intuitive measure to evaluate system robustness.
In fact, we observe that for lower values of α, the system
exhibits lower and sharper probabilities of outage –optimally
tuned in the CV@R sense– at always attainable channel rates.
On the other hand, less risk-aware settings corresponding to
higher values for α result in much higher variability in the
corresponding optimal channel rates.

The latter observations are also evident from Figs. 5 and 7,
which highlight the vast difference in rate variability between
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Fig. 4: Results for a network with 3 users and a sum rate utility, P0 = 10.
Top: Rate histograms. Bottom: Outage probabilities.
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Fig. 5: Achieved rates for the 3-user network with a sum rate utility, P0 = 10.
Top: α = 0.53 (risk-aware). Bottom: α = 1 (risk-neutral).

the risk-aware and risk-neutral policies, through their evolution
in time (channel use). We see that the optimal CV@R policy
exhibits quasi-invariant communication rate trends, keeping
the rates at certain reliability levels. Further, the proportional
fairness utility achieves more evenly distributed rates among
users, as shown in Fig. 7 (top). In other words, the combination
of risk-awareness and proportional fairness achieves system
performance that is both user-fair, and aware of fading risk.

VI. CONCLUSION

We proposed a new risk-aware reformulation of the clas-
sical resource allocation problem for point-to-point networks.
Utilizing the CV@R as a measure of risk generalizing ex-
pectations, we developed the tail waterfilling algorithm, which
extends classical stochastic waterfilling in an interpretable and
tunable way, and induces network robustness and reliability
rigorously and tractably. The effectiveness of tail waterfilling
was corroborated via detailed numerical simulations.
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