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ABSTRACT
Conditional Value-at-Risk (CV@R) is one of the most popular mea-
sures of risk, which has been recently considered as a performance
criterion in supervised statistical learning, as it is related to desirable
operational features in modern applications, such as safety, fairness,
distributional robustness, and prediction error stability. However,
due to its variational definition, CV@R is commonly believed to re-
sult in difficult optimization problems, even for smooth and strongly
convex loss functions. In this work, we disprove this statement by es-
tablishing noisy (i.e., fixed-accuracy) linear convergence of stochas-
tic gradient descent for sequential CV@R learning, for a large class
of not necessarily strongly-convex (or even convex) loss functions
satisfying a set-restricted Polyak-Łojasiewicz inequality. This class
contains all smooth and strongly convex losses, confirming that clas-
sical problems, such as linear least squares regression, can be solved
efficiently under the CV@R criterion, just as their risk-neutral ver-
sions. Our results are also illustrated empirically on an indicative
risk-aware ridge regression task, verifying their validity.

Index Terms— Statistical Learning, Risk-Aware Learning,
Conditional Value-at-Risk, Stochastic Gradient Descent, Polyak-
Łojasiewicz Inequality.

1. INTRODUCTION
Risk-awareness is steadily becoming an important aspect in modern
statistical learning theory and practice, naturally driven by the need
to meet strict reliability requirements in high-stakes, critical applica-
tions [1, 2, 3, 4, 5, 6, 7]. In such settings, risk-aware learning formu-
lations are particularly appealing, since they can explicitly balance
optimal predictor performance between average-case and “difficult”
to learn, infrequent, or worst-case examples, providing a form of sta-
tistical robustness in the learning outcome [8, 9, 10, 4, 11, 12, 13].
The basic idea of risk-aware learning is to replace the standard ex-
pected loss objective by more general loss functionals, called risk
measures [14], whose purpose is to effectively quantify the statis-
tical variability of the particular random loss of choice, in addition
to average performance. Popular examples of risk measures include
mean-variance functionals [14, 15], mean-semideviations [16], and
Conditional Value-at-Risk (CV@R) [17].

CV@R, in particular, plays a significant role in supervised sta-
tistical learning, as it is naturally connected not only to prediction
error stability (see Section 7), but also to distributional robustness
[14, 18, 19], fairness [20], as well as the formulation of classical
learning problems, such as the celebrated (ν-)SVM [21, 22, 23]. Rel-
evant generalization bounds were recently reported in [24] and [25],
also establishing asymptotic consistency for CV@R learning.

But except for operational effectiveness and generalization per-
formance, computational methods for actually obtaining optimal so-
lutions to CV@R learning problems are of paramount importance,
especially for practical considerations [12, 18, 19]. The design of
such methods is partially facilitated by the variational definition of

CV@R ([17], also see Section 2), allowing the reduction of any
CV@R learning problem to a standard stochastic problem with a
special loss function. This approach was followed recently in [12],
where various averaged Stochastic Gradient Descent (SGD)-type al-
gorithms were analyzed. Almost concurrently and under a batch set-
ting (i.e., given a dataset available a priori), [18] proposed an adap-
tive sampling algorithm for CV@R learning, by exploiting the dual
representation of CV@R [14]. In both works, convergence rates re-
ported are at best of the order of 1/

√
T , where T denotes the total

runtime of the respective algorithm (iterations).
Such rates might seem to be nearly all we can get: Due to its con-

struction, CV@R is commonly conjectured to result in potentially
difficult and challenging stochastic problems, mainly because stan-
dard properties which enable fast convergence of gradient methods,
such as strong convexity, are not preserved when transitioning from
(data-driven) risk-neutral to CV@R learning, even for smooth and
strongly convex losses. In this work, we disprove this argument by
showing that SGD attains noisy (i.e., fixed-tunable-accuracy) linear
global convergence for sequential CV@R learning (i.e., provided a
datastream), for a large class of not necessarily strongly-convex (or
even convex) loss functions satisfying a new set-restricted Polyak-
Łojasiewicz inequality [26, 27]. As a byproduct, we also obtain
noisy linear convergence of SGD for all smooth and strongly con-
vex losses, since those belong to the aforementioned class.

Within the setting considered, our results confirm that CV@R
learning is almost as easy as risk-neutral learning under certain natu-
ral conditions which we identify. This implies that CV@R learning
can find widespread use in applications, since risk-aware versions
of classical problems, such as linear least squares estimation, can
be solved as efficiently as their risk-neutral counterparts, and with
provable and equivalent rate guarantees. Numerical simulations on
a basic ridge regression task illustrate the validity of the results.

Note: Proofs to all results presented are omitted and will be pre-
sented in a subsequent journal submission currently under prepara-
tion; the interested reader is also referred to the preprint [28].

2. CV@R STATISTICAL LEARNING
Let PD be an unknown distribution over an example space D ≜
Rd×R, and consider a hypotheses class F ≜ {ϕ : Rm → R|ϕ(·) ≡
f(·,θ),θ ∈ Rm}. We are interested in discovering a hypothesis or
predictor f(·,θ∗

) ∈ F that best approximates y when presented
with x, where (x, y) ∼ PD . The quality of every predictor f(·,θ)
is captured by a loss ℓ : R×R → R taking, for each example (x, y),
the quantities f(x,θ) and y and mapping them to an integrable ran-
dom variable, ℓ(f(x,θ), y). Posing the fitting problem

inf
θ∈Rm

[
EPD{ℓ(f(x,θ), y)}≡

ˆ
D
ℓ(f(x,θ), y)dPD(x, y)

]
, (1)

is then standard and at the heart of machine learning and beyond,
such as signal processing, statistics, and control.



Despite its wide popularity, though, a fundamental issue with
the gold standard expected loss is its very nature: It is risk-neutral,
i.e., it minimizes losses only on average. Because of this, it lacks ro-
bustness and essentially ignores relatively infrequent but statistically
significant example instances, treating them as inconsequential. This
is important from a practical point of view, since such more “diffi-
cult” or “extreme” examples will incur high and/or undesirable in-
stantaneous losses, even if the optimal prediction error has minimal
expected value [8, 14, 16, 5, 18, 12, 13].

As briefly explained in Section 1, the need for a systematic treat-
ment of the shortcomings of the risk-neutral approach motivates and
sets the premise of risk-aware statistical learning, in which expec-
tation is replaced by more general loss functionals, called risk mea-
sures [14]. Their purpose is to induce risk-averse characteristics into
the learning outcome by explicitly controlling the statistical variabil-
ity of the random loss ℓ(f(x, ·), y), or, equivalently, its tail behavior.
By far one of the most popular risk measures in theory and practice
is CV@R, which for an integrable random loss Z is defined as [17]

CV@R
α
(Z) ≜ inf

t∈R

{
t+

1

α
E{(Z − t)+}

}
, (2)

at confidence level α ∈ (0, 1]. Intuitively, CV@R
α
(Z) is the mean

of the worst (α · 100)% of the values of Z, and is a strict generaliza-
tion of expectation; in particular, it is true that

CV@R
1
(Z) ≡ E{Z} ≤ CV@R

α
(Z),∀α ∈ (0, 1], and (3)

CV@R
0
(Z) ≜ lim

α↓0
CV@R

α
(Z) ≡ esssupZ. (4)

One of the most important properties of CV@R is that it consti-
tutes a coherent risk measure, meaning that it is a convex, monotone,
translation equivariant and positively homogeneous functional of its
argument; see ([14], Section 6.3).

By setting Z ≡ ℓ(f(x,θ), y),θ ∈ Rm, we may now formulate
the CV@R statistical learning problem as

inf
θ∈Rm

CV@R
α
PD [ℓ(f(x,θ), y)]. (5)

Observe that due to its defining properties, the CV@R problem is
most intuitive, and allows for a tunable tradeoff between risk neu-
trality (for α ≡ 1), and minimax robustness (as α ↓ 0). Additionally,
because CV@R is a coherent risk measure, it follows that problem
(5) is convex whenever ℓ(f(x, ·), y) is convex for each (x, y), and
strongly convex whenever ℓ(f(x, ·), y) is strongly convex for each
(x, y) [16]. Thus, problem (5) is favorably structured.

However, because CV@R is itself defined as the optimal value
of a stochastic program, it is difficult to evaluate analytically, espe-
cially in a data-driven setting. Still, we may leverage the definition
of CV@R and reformulate (5) as a risk-neutral stochastic program
over both variables (θ, t) as

inf
(θ,t)∈Rm×R

EPD

{
t+

1

α
(ℓ(f(x,θ), y)− t)+

}
. (6)

Although problem (6) can now be tackled using standard methods of
stochastic optimization, the structural benefits of the CV@R func-
tional are largely gone: For instance, although it is true that (6) is
convex whenever the composition ℓ(f(x, ·), y) is convex, it might
not be strongly convex, even if ℓ(f(x, ·), y) is. This is important,
because it would imply that classical setups, such as linear least

squares, might result in badly behaving CV@R problems, for α ∈
(0, 1). Of course, those issues can only get worse in a nonconvex
setting, e.g., when the function f is a Deep Neural Network (DNN).

Nevertheless, it is intuitive that, due to the close relationship be-
tween problems (5) and (6), the good behavior of the former should
carry through to the latter, and classical solution strategies, such as
SGD, should exhibit good performance. Here we show that this is
indeed the case.

3. CV@R STOCHASTIC GRADIENT DESCENT
Since PD is unknown, problem (1) (cf. (6)) is impossible to solve a
priori. Instead, one should rely on observable example pairs (data).
Here we are assuming a sequential setting, where a stream of data
{(xn

, y
n
)}∞n=0 is available, and the focus is on solving (1) via

stochastic approximation, i.e., by applying the standard stochastic
gradient descent algorithm to the equivalent CV@R problem (6).
The sequential setting conforms with numerous real-time applica-
tions, and is standard in stochastic optimization. Throughout, we
impose usual assumptions on the composition ℓ(f(x, ·), y).

Assumption 1. Unless the function ℓ(f(x, ·), y) is convex on Rm

for PD-almost all (x, y), then for each θ ∈ Rm:

1. ℓ(f(x, ·), y) is Cθ(x, y)-Lipschitz on a neighborhood θ for
PD-almost all (x, y), and EPD{Cθ(x, y)} < ∞.

2. ℓ(f(x, ·), y) is differentiable at θ for PD-almost all (x, y),
and PD(ℓ(f(x,θ), y) = t) ≡ 0 for all (θ, t) ∈ Rm × R.

For convenience, let us define, for (θ, t) ∈ Rm × R,

Gα(θ, t) ≜ EPD

{
t+

1

α
(ℓ(f(x,θ), y)− t)+

}
. (7)

Then it may be shown that, under Assumption 1, differentiation may
be interchanged with expectation for Gα ([14], Section 7.2.4), yield-
ing, for every (θ, t), the (sub)gradient representation

∇Gα(θ, t)=

 1

α
EPD{1A(θ,t)(x, y)∇θℓ(f(x,θ), y)}

− 1

α
EPD{1A(θ,t)(x, y)}+ 1

, (8)

where for brevity and for later use we have defined the event-valued
multifunction A : Rm × R ⇒ D as

A(θ, t) ≜ {(x, y) ∈ D|ℓ(f(x,θ), y)− t > 0}, (9)

for (θ, t) ∈ Rm × R. We note that, for each (t,θ), the set A(t,θ)
contains all examples corresponding to the positive section of the
function ℓ(f(•,θ), ·)− t.

Leveraging (8), and provided an independent and identically dis-
tributed datastream {(xn

, y
n
)}∞n=0, we can now outline the simplest

and most obvious scheme for possibly tackling the CV@R problem
(6), i.e., the standard SGD rule, described via the recursive updates

t
n+1

= t
n − γ

[
1− 1

α
1A(θ

n
,t

n
)(x

n+1
, y

n+1
)
]

and (10)

θ
n+1

= θ
n − β

1

α
1A(θ

n
,t

n
)(x

n+1
, y

n+1
)

×∇θℓ(f(x
n+1

,θ
n
), y

n+1
), (11)

where n ∈ N is an iteration index, β > 0 and γ > 0 are constant
stepsizes, and where (θ0

, t
0
) are appropriately chosen initial values.



We observe that the SGD updates (10) and (11) can be regarded
as a modification of the standard risk-neutral SGD (solving (1)), but
where learning happens if and only if ℓ(f(xn+1

,θ
n
), y

n+1
)−t

n ≥
0, for each n. The update in t controls the frequency of learning, as
well as the proportion of examples that participate in learning. Also
note that if α ≡ 1, then t

n is nonincreasing, and therefore θn should
approach a risk-neutral solution. In the following, we suggestively
refer to the algorithm comprised by (10) and (11) as CV@R-SGD.

4. POLYAK-ŁOJASIEWICZ CONDITIONS
We next present the standard Polyak-Łojasiewicz (PŁ) inequality,
first appeared in [26].

Definition 1. (PŁ [26]) We say that a function φ : RL → R satisfies
the Polyak-Łojasiewicz (PŁ) inequality with parameter µ > 0 on
Σ ⊆ RL, if and only if φ is differentiable on Σ and, for every x ∈ Σ,

1

2
∥∇φ(x)∥22 ≥ µ(φ(x)− φ

⋆
), (12)

where φ
⋆ ≜ infx∈Σ φ(x).

In a recent seminal article [27], the PŁ inequality was exploited
to show linear convergence of gradient methods under multiple in-
teresting and useful setups. Further, [27] shows that strong convexity
implies the PŁ inequality, but also that there are lots of nonconvex
functions obeying the PŁ inequality. This indeed implies that S(GD)
converges globally and linearly for such functions.

For our purposes, unfortunately, the standard PŁ inequality (Def-
inition 1) will not suffice. Instead, we introduce and rely on a gener-
alization, which we call the set-restricted PŁ inequality, as follows.

Definition 2. (Set-Restricted PŁ) Consider a measurable function
φ : RL × RM → R, a Borel-valued multifunction B : RL ⇒ RM ,
and a probability measure M on B(RM

). We say that φ satisfies
the (diagonal) B-restricted Polyak-Łojasiewicz (PŁ) inequality with
parameter µ > 0, relative to M and on a subset Σ ⊆ RL, if and only
if φ(·,w) is subdifferentiable on Σ for M-almost every w ∈ RM ,
and it is true that, for every z ∈ Σ,

1

2
∥EM{∇zφ(z,w)|B(z)}∥22

≥ µEM{φ(z,w)− φ
⋆
(z)|B(z)}, (13)

where φ
⋆
(·) ≜ inf z̃∈Σ EM{φ(z̃,w)|B(·)}.

Although admittedly somewhat mysterious at first sight, the set-
restricted PŁ inequality is basically the same as the classical PŁ in-
equality [27], with the important difference that expectation is re-
placed by conditional expectation relative to an event varying in the
argument of the function involved (i.e., an event-valued multifunc-
tion). In fact, the set-restricted PŁ inequality quantifies the curvature
of the loss surface by restricting attention on sets of learning exam-
ples that matter (in Definition 2, B plays this role).

The usefulness of the set-restricted PŁ inequality stems from the
fact that, interestingly, it is satisfied by every strongly convex smooth
function, as the next result suggests.

Proposition 1. (Strong Convexity =⇒ Set-Restricted PŁ) Sup-
pose that the loss ℓ(f(x, ·), y) is L-smooth and µ-strongly convex
for PD-almost all (x, y). Then, for every pair (θ,B) ∈ Rm×B(D)
such that PD(B) > 0, it is true that

1

2
∥E{∇θℓ(f(x,θ), y)|B)}∥

2
2 ≥µE{ℓ(f(x,θ), y)−ℓ

⋆
(B)|B},(14)

where ℓ
⋆
(B) ≡ inf θ̃ E{ℓ(f(x, θ̃), y)|B}.

From Proposition 1, it follows that every smooth strongly convex
loss satisfies the set-restricted PŁ inequality relative to every quali-
fying event-valued multifunction of choice. For instance, in the no-
tation of Proposition 1, one may set B ≡ A(θ, t), for every fixed
pair (θ, t). This choice is particularly important, as we will see in
the next section.

5. LINEAR CONVERGENCE OF CV@R-SGD

Hereafter, let {Dn}n∈N be the history (i.e., filtration) generated by
CV@R-SGD and the available datastream. Our main result follows,
showing linear convergence of CV@R-SGD under the A-restricted
PŁ inequality, in particular.

Theorem 1. (Linear Convergence of CV@R-SGD) Fix α ∈
(0, 1), let Assumption 1 be in effect and suppose that, for a set
∆ ≡ ∆m × [−∞, t], with ∆m ⊆ Rm, it holds that (θ∗

, t
∗
) ∈

argmin∆Gα(θ, t) ̸= ∅, and that the loss ℓ(f(x, ·), y) obeys the
A-restricted PŁ inequality with parameter µ > 0 relative to PD on
∆. Further, for fixed T ∈ N, let γ be small enough such that

En{t
n+1|Dn} ≥ t

n
+ 2γµ(t

∗ − t
n
)+, ∀n ∈ NT . (15)

As long as ∆T ≜ {θn
, t

n}n∈NT
⊆ ∆, Gα is L ≡ Lα-smooth on

∆T , and 2µmin{β, γ} < 1, it is true that

E
{
Gα(θ

T+1
, t

T+1
)−Gα(θ

∗
, t

∗
)
}

≤ (1− 2µmin{β, γ})T (Gα(θ
0
, t

0
)−Gα(θ

∗
, t

∗
))

+
(max{β, γ})2

min{β, γ}
L(1 + C

2
T )

4α
2
µ

,

(16)

where supn∈NT
E{∥∇θℓ(f(x

n+1
,θ

n
), y

n+1
)∥22} ≤ C

2
T .

Some remarks regarding the assumptions and conclusions of
Theorem 1 are essential at this point. First, we should discuss the
existence of an appropriate γ satisfying condition (15), which is of
central importance in the proof the theorem. Indeed, if we assume
that there are choices of ε > 0 and γ such that, for every n ∈ NT ,
the inequality

α
(
1 +

ε

γ

)
≤ PD(A(θ

n ≡ θ
n
α, t

n ≡ t
n
α,γ)) (17)

is satisfied, then it may be shown that (15) will be (conservatively)
satisfied as long as [28]

αε

1− α
≤ γ <

ε

2µ(t
∗ − l) + 1

, (18)

where l ∈ R denotes the lowest possible value of the loss function
under consideration, provided such value exists. Note that conditions
(17) and (18) can indeed be satisfied for particular choices of ε and
γ when α is small enough.

Although these dependencies might seem fairly restrictive, they
are very reasonable, since in order for CV@R-SGD to converge fast,
the condition ℓ(f(x

n+1
,θ

n
), y

n+1
) − t

n ≥ 0 needs to be satisfied
sufficiently often. But all this is reasonable from a practical perspec-
tive as well: If α is closer to 1 (risk-neutral setting), risky events
are effectively smoothened, whereas, if α approaches zero, only rare
events matter and an essentially robust solution is sought, which does
not really exhibit the dynamic character of a risk-aware solution.
Therefore, depending on the problem, α should be chosen modestly,
providing both non-trivial results and fast linear convergence; from



a conceptual point of view, there is a certain logical balance to be
respected between moderatism and conservatism.

Second, since Gα depends on the choice of the CV@R level α,
it is expected that the smoothness parameter L will be dependent on
α as well. We discuss this issue further in Section 6.

Third, by combining Proposition 1 with Theorem 1, it follows
that CV@R-SGD converges linearly to fixed, user-tunable accu-
racy whenever ℓ(f(x, ·), y) is strongly convex and smooth for every
(x, y), even though Gα might not be strongly convex (only smooth-
ness of Gα is required). This is nice, because it shows that classi-
cal problems, such as linear least squares regression, can provably
be solved most efficiently using SGD under risk-aware performance
criteria, i.e., the CV@R, just as their risk-neutral counterparts (e.g.,
via the celebrated Least-Mean-Squares (LMS) algorithm for linear
least squares problems) –also see our Section 7 later on.

6. ENFORCING SMOOTHNESS
There are two potential issues associated with the CV@R problem
(6) and the assumptions ensuring linear convergence of CV@R-
SGD, as suggested in Theorem 1. The first is that there are use-
ful cases where the demand that PD(ℓ(f(x, •), y) = (·)) ≡ 0 on
Rm × R (see Assumption 1.2) might not be satisfied; this happens,
e.g., in classification problems where the hypothesis class F con-
tains hard classifiers, i.e., functions with binary or discrete range.
The second issue is that the smoothness assumption on Gα, essen-
tial to obtain the rate promised by Theorem 1, might not be easy to
verify or even hold by merely assuming that the loss ℓ(f(x, ·), y)
is smooth; this is due to the presence of the indicator 1A(•,·)(x, y)
next to ∇θℓ(f(x, •), y) in (8). It turns out that these two issues are
related, and both may be mitigated by a rather simple strategy, which
we now outline. For more details, the reader is referred to [28].

Consider an augmented example (x, y, w), where w ∼ N (0, σ
2
),

σ
2
> 0, is a fictitious target, independent of (x, y), which we choose

to use adversarially during the training process. In particular, we do
that by defining the surrogate loss ℓ̃ : R× R× R → R as

ℓ̃(f(x,θ), y, w) ≜ ℓ(f(x,θ), y)− w, (19)

Although such a surrogate loss is meaningless in the risk-neutral set-
ting (since E{w} ≡ 0), it provides regularization in risk-aware and,
in particular, CV@R statistical learning. In fact, it can be easily
shown that, by choosing ℓ̃ as the loss, Assumption 1.2 is always sat-
isfied, and the resulting objective function Gα in problem (6) is L′-
smooth whenever ℓ(f(x, ·), y) is C-Lipschitz and L-smooth, with

L
′ ≡ L

′
α ≡ (Lσ

√
2π + C

2
)/(ασ

√
2π). (20)

Further, we have uniform estimates in (θ, t)

Gα(θ, t) ≤ G̃α(θ, t) ≜ EPD̃

{
t+

1

α
(ℓ̃(f(x,θ), y, w)− t)+

}
≤ Gα(θ, t) + σ(α

√
2π)

−1
, (21)

where D̃ ≜ Rd × R × R. Then, similarly to Theorem 1, we obtain
linear convergence up to fixed accuracy

(max{β, γ})2

min{β, γ}
(1 + C

2
T )

4α
2
µ

Lσ
√
2π + C

2

ασ
√
2π

+
σ

α
√
2π

, (22)

which by proper choice of σ results in a quantity of the order of(√
(max{β, γ})2/min{β, γ}

)/
α
2
. (23)

Lastly, observe that the smoothness parameter of Gα in Theorem 1,
here L

′, depends on the CV@R level α, as would be expected.
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Fig. 1. Comparison between risk-neutral (LMS) and risk-aware
(CV@R-SGD) ridge regression. Top: Evolution of iterates {θn}n.
Bottom: Histogram (left) and actual values (right) of the test error.

7. AN INDICATIVE NUMERICAL EXAMPLE

In this section, we numerically demonstrate the behavior of CV@R-
SGD, confirming the validity of Theorem 1. To this end, we consider
the λ-strongly convex, risk-aware ridge regression problem

inf
θ∈Rm

CV@R
α
PD

[
(y − ⟨θ,x⟩)2 + λ∥θ∥22

]
, (24)

where y ≡ ⟨θo,x⟩ ∈ R for constant θo ∈ R7 and with the elements
of x ∈ R7 being independent uniform in [0, 2], λ ≡ 0.1 and for two
values of α, i.e., α ≡ 0.2 and α ≡ 0.6. Our goal is to find a θ

∗

which minimizes the mean of the worst 20% (if α = 0.2) or 60% (if
α = 0.6) of all possible values of the random error (y − ⟨·,x⟩)2 +
λ∥ · ∥22. Note that, for α ≡ 1, problem (24) reduces to ordinary ridge
regression, and may be solved via the LMS algorithm, which in this
special case coincides with the CV@R-SGD algorithm by setting
t
0
= 0 (implying that tn = 0, for all n ∈ N, since α ≡ 1).
Fig. 1 shows the iterate evolution as well as the behavior of the

optimal prediction (test) error for both CV@R-SGD (with stepsizes
β ≡ α×0.01 and γ ≡ 0.001) and the LMS scheme (with stepsize
β ≡ 0.01). We observe that both algorithms converge at an essen-
tially identical noisy linear rate, in line with Theorem 1. However,
the solutions are radically different. In fact, the risk-aware solutions
discovered by CV@R-SGD dramatically reduce the volatility of pre-
diction error, and improve prediction stability. Although this appar-
ently comes at the cost sacrificing mean performance, such sacrifice
is fully user-customizable by varying the CV@R level α.

8. CONCLUSION

In this work, we established noisy linear convergence of SGD for
sequential CV@R learning, for a large class of possibly nonconvex
loss functions satisfying a set-restricted PŁ inequality, also including
all smooth and strongly convex losses as special cases. This result
disproves the belief that CV@R learning is fundamentally difficult,
and shows that classical learning problems can be solved efficiently
under CV@R criteria, just as their risk-neutral versions. Our the-
ory was also illustrated via an indicative numerical example. Future
work includes the consideration of special learning settings such as
linear least squares, as well as other risk measures beyond CV@R.
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