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Abstract

We show that risk-constrained functional optimization problems with general integrable noncon-
vex instantaneous reward/constraint functions exhibit strong duality, regardless of nonconvexity.
We consider risk constraints featuring convex and positively homogeneous risk measures admit-
ting dual representations with bounded risk envelopes, generalizing expectations. Popular risk
measures supported within our setting include the conditional value-at-risk (CVaR), the mean-
absolute deviation (MAD, including the non-monotone case), certain distributionally robust
representations and more generally all real-valued coherent risk measures on the space L1. We
highlight the usefulness of our results by further discussing various generalizations of our base
model, extensions for risk measures supported on Lp>1, implications in the context of mean-
risk tradeoff models, as well as more specific applications in wireless systems resource allocation,
and supervised constrained learning. Our core proof technique appears to be new and relies on
risk conjugate duality in tandem with J. J. Uhl’s weak extension of A. A. Lyapunov’s convexity
theorem for vector measures taking values in general infinite-dimensional Banach spaces.

Keywords: Lagrangian Duality, Strong Duality, Risk-Constrained Functional Programming,
Nonconvex Optimization, Risk-Averse Optimization, Resource Allocation, Constrained Learning.

1 Introduction and Problem Setting

On some arbitrary base probability space (Ω,F , µ), consider a random element H : Ω → H ≜ RNH

with induced Borel measure P : B(H) → [0, 1], modeling some observable random phenomenon,
which we would like to optimally handle in a certain sense by making appropriate decisions. In
particular, we are interested in risk-constrained nonconvex functional programs formulated as

∞ > P∗ = maximize
x,p(·)

go(x)

subject to x ≤ −ρ(−f(p(H),H))
g(x) ≥ 0
(x,p) ∈ X ×Π

, (RCP)

where, with C ≜ RN , go : C → R and g : C → RNg are concave utility functions, p : H → R ≜ RNp

is the allocation policy on observables H, f : R ×H → C is a generally nonconvex instantaneous
performance level score, measuring the quality of a policy p at each realization H in H and such that
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f(p(·), ·) ∈ L1(P,C) on Π, and where ρ : L1(P,C) → C is a finite-valued vector risk measure, which
we assume that is convex1, lower semicontinuous and positively homogeneous in every dimension
(i.e., component-wise), with the standardized convention that, for each i ∈ N+

N ,

ρi(Z) = ρi(Zi), for all Z ∈ L1(P,C).

As indicated in (RCP), performance risks are further restricted to the finite-dimensional set X ⊆ C
and policies are further restricted to the infinite-dimensional set Π. More specific –yet general
enough– assumptions on the structure of (RCP) enabling the development of the results advocated
in this paper will be discussed in due course.

Problem (RCP) manifests itself in a variety of interesting applications. As a canonical example
coming from wireless systems engineering [2], if i ∈ N+

N refers to a user of a wireless system, then
the i-th entry of ρ may evaluate the risk associated with the service experienced by the i-th user;
hereafter, f will also be called the service function. However, with the exception of very special
scenarios, the service experienced by the i-th user can (and, in general, will) be dependent on the
services experienced by the rest of the users in the system. This is due to each service fi being a
function of the coupling variables p(H) –the resources– andH –the uncertainty–, which are common
to all users in the system. This general structure adheres to, among others, a large variety of resource
allocation problems encountered in practice (e.g., see Section 1.1 below, as well as Section 7.1).

Problem (RCP) admits an equivalent and rather useful representation. By the duality theorem
for risk measures [1, Theorem 6.5], we have that for every risk measure ρ which is convex, proper,
lower semicontinuous and positively homogeneous, it holds that

ρ(Z) = sup
ζ∈A

⟨ζ, Z⟩ ≜ sup
ζ∈A

∫
ζ(h)Z(h)dP(h), for all Z ∈ L1(P,R),

where the uncertainty set A is the domain of the convex conjugate of ρ (i.e., its Legendre-Fenchel
transform), and it holds that A ⊆ L∞(P,R) by functional duality. The set A is also called the risk
envelope of ρ. In this paper, we focus on risk envelopes which are subsets of {ζ ∈ L∞(P,R)||ζ(·)| ≤
γ,P-a.e.}, where γ > 0 is some arbitrarily large but finite constant, but otherwise we make no
further assumptions. Note that such a constant always exists whenever ρ is additionally real-valued
(and thus continuous) on L1(P,R) –i.e., in the class of risk measures appearing in problem (RCP)–,
in which case A coincides with the subdifferential of ρ at the origin, implying that A is a nonempty
and bounded (in fact weakly∗-compact) subset of L∞(P,R), and independent of the choice of Z [1,
Sections 6.3.1 and 7.3.1]. Of course, it follows that, for every Z ∈ L1(P,R),

−ρ(−Z) = inf
ζ∈A

⟨ζ, Z⟩.

Under this provisioning, our initial functional program may be equivalently expressed as

maximize
x,p(·)

go(x)

subject to x ≤ infζ∈AS
γ
E{ζ(H) ◦ f(p(H),H)}

g(x) ≥ 0
(x,p) ∈ X ×Π

, (RCP-E)

where “◦” denotes the Hadamard product, the infimum is understood in a component-wise manner,
and where the service uncertainty set (i.e., the risk envelope) AS

γ is defined as the Cartesian product

AS
γ ≜ A1

γ ×A2
γ × . . .×AN

γ , with each Ai
γ satisfying the inclusion

Ai
γ ⊆ {ζ ∈ L∞(P,R)

∣∣|ζ(·)| ≤ γ,P-a.e.}, ∀i ∈ N+
N .

1To avoid confusion throughout, a risk measure is called convex if and only if it is a convex functional of its argument; note
that this is in contrast to, e.g., [1, Definition 6.4], where a risk measure is called convex if it satisfies additional conditions
to mere convexity, namely, monotonicity and translation equivariance.
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In passing, it may be worth noting that (RCP-E) is equivalent to the semi-infinite functional program

maximize
x,p(·)

go(x)

subject to x ≤ E{ζ(H) ◦ f(p(H),H)}, ∀ζ ∈ AS
γ

g(x) ≥ 0
(x,p) ∈ X ×Π

, (RCP-I)

illustrating the generality of the risk-constrained problem (RCP), as compared with its risk-neutral
counterpart obtained by choosing Ai

γ = {ζ|ζ(·) = 1,P-a.e.} for i ∈ N+
N , which is of course equivalent

with replacing the risk measure ρ by a finite-dimensional vector of linear functionals (expectations).

1.1 Origins, Related Literature and Contributions

We will be mainly interested in investigating Lagrangian duality relations for the infinite-dimensional
constrained program (RCP) –in particular, whether strong duality holds or not– under a general
set of assumptions, notably without enforcing any additional structure on the integrable service
vector function f(·,H). Recall that strong duality is a very desirable property for both theoretical
and practical purposes and ensures in particular existence of optimal dual variables (Lagrange
multipliers), in addition to a null duality gap [3–5]; see Section 3 for a gentle exposition focusing on
our purposes herein.

Before we discuss related prior work and existing results, it would be helpful to first present
evidence justifying the usefulness and relevance of (RCP) in applications by mainly capitalizing on
the standard risk-neutral case, i.e., when ρ is a vector of expectations. Such evidence will hopefully
provide at least some preliminary motivation for studying (RCP) in the general risk-constrained
setting we consider in this paper. Indeed, due to the modular structure of (RCP), and beyond its
applicability in numerous settings in resource allocation for networking and wireless communications
[2, 6–21], instances of (RCP) appear in areas including nonlinear sparse functional programming [22]
with applications such as nonlinear line spectrum estimation and robust functional data analysis
[22], nonconvex constrained machine learning [23], the so-called “fluid problem” in dynamic resource
allocation [24] (with various applications such as network dynamic pricing, network revenue manage-
ment, dynamic bidding, online matching, and order fulfillment; see [24] and the references therein),
and wireless control [25, 26], to name a few. In all those instances of the constrained problem (RCP),
nonconvexity is abundant, and it should be expected that a rigorous dual-domain characterization
of (RCP), although highly desirable, is a challenging task, at least under general conditions.

Dual-domain analysis and strong duality results concerning the risk-neutral counterpart of (RCP)
just discussed have a relatively short history, starting, to the best of our knowledge, in 2008 with the
seminal paper [12] by Luo and Zhang in the context of wireless spectrum management (i.e., resource
allocation), which was in turn based on an earlier preliminary discovery reported by Yu and Lui in
[27]. Since then, and after subsequent developments by Ribeiro and Giannakis in [2, 14], there has
been a flurry of research activity positioned around (RCP) and its various applications, in particular
informing an extensive literature on dual-domain methods for obtaining optimal resource policies
in the context of networking and wireless systems, including recent advances in model-free learning
for wireless communications –see, e.g., references in the previous paragraph–, such as approximate
strong duality relations for finite-dimensional versions of (RCP) exploiting convolutional smoothing
and universal policy parameterizations [19, 21]. Strong duality of (RCP) in the risk-neutral setting
has also been studied in [22], and more recently leveraged in [23] to establish PAC learnability and
statistical generalization in the context of constrained machine learning.

More specifically and from a technical standpoint, articles [12] and subsequently [2, 14] were the
first to establish the remarkable fact that, under a set of standard and generic assumptions (see our
Assumption 1 in Section 4), the most important of them being the nonatomicity of the reference
Borel measure P, the risk-neutral counterpart of (RCP) exhibits strong duality (also implying a zero
duality gap) regardless of the nature of the service f(·,H); the latter may in fact be arbitrary, in
particular (component-wise) nonconcave or even discontinuous. In a sense (see, e.g., [22, Theorem 1
and its proof]), a nonatomic distribution P “patches the holes” of the image space set of (RCP) [28],
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thus preserving its convexity; this follows from a careful application of the celebrated theorem of A.
A. Lyapunov [29, Corollary IX.1.6], on the convexity of the range of finite-dimensional nonatomic
vector measures. The guaranteed convexity of the image space set of (RCP) can then be utilized to
establish strong duality –itself a consequence of convex geometry [30]– of (RCP) in the risk-neutral
case via a standard and almost elementary application of the supporting hyperplane theorem. The
latter argument is a special part of a longer story about strong duality relations in general conic
programming in infinite dimensions, for instance as considered in [30]; see also the books [28, 31].

Evidently, if its risk-neutral version is at all valuable, then so is the substantially more general
risk-constrained problem (RCP), which is the focus of this work. This is because most if not all
problems discussed above admit at least one interpretable and practically justifiable risk-averse
reformulation (by just replacing expectations with appropriate and meaningful risk measures, at the
very least). For a concrete example, we refer the reader to our recent article [32], where (RCP) is
considered in the “canonical” context of wireless systems resource allocation, albeit under a classical
and stylized convex programming setting (thus ensuring strong Lagrangian duality under standard
constraint qualifications). In [32], the standard expectation is replaced by the Conditional Value-
at-Risk (CVaR) [1, 33], provably resulting in optimal resource policies ensuring robust and reliable
system performance, and operationally desirable quality-of-service.

Despite their relevance, though, risk-constrained policy search programs in the form of (RCP) are
not currently as well-studied as their risk-neutral versions. We believe that this is natural and mainly
due to the fact that, specifically in the nonconvex setting, dual-domain analysis and properties of
(RCP), which are crucial for further developments such as the design of efficient algorithms for
tackling such problems, are currently absent and essentially unexplored. Our work in this paper is
exactly on initiating an effort for rigorously addressing those issues.

Contributions: We show that, perhaps surprisingly, the risk-constrained functional problem
(RCP) exhibits strong duality, under exactly the same assumptions utilized in the risk-neutral case
(i.e., Assumption 1 in Section 4). No further assumptions are required, and the result holds for a
wide variety of risk measures, namely all (finite-valued) convex and positively homogeneous risk
measures on the space L1, where the vector ρ may be comprised of different such risk measures in
each dimension. Popular risk measures supported within our setting include the CVaR, the mean-
absolute deviation (MAD, including the non-monotone case) [34, 35], certain distributionally robust
representations and more generally all real-valued coherent risk measures on L1. Consequently,
all members of large classes of coherent risk measures (taken on L1), such as spectral risk mea-
sures [1, Section 6.3.4], or distortion risk measures (with appropriately chosen distortions) [36], or
combinations of those, are valid choices for each of the entries of ρ in (RCP).

To the best of our knowledge, the technique we devise to establish strong duality of (RCP) is
new. It relies on exploiting risk duality in (RCP) so that its risk constraints, which constitute a
finite-dimensional vector of nonlinear functionals, can be lifted to a vector of linear functionals in
infinite dimensions; see the equivalent problem (RCP-E). The hope is for such a collection of linear
functionals to be easier to handle than the risk measures they represent, by leveraging elements of
functional analysis, specifically vector measure theory [29].

However, in contrast to the risk-neutral setting, application of Lyapunov’s convexity theorem
fails in the case of (RCP-E), because the corresponding vector measure construction –in the fashion
of [2, 12, 14]– is infinite-dimensional. For such vector measures, Lyapunov’s convexity theorem prov-
ably may not hold; see, e.g., counter-examples in [29, Section IX. 1]. To bypass this fundamental
difficulty, we leverage another well-known result, namely, J. J. Uhl’s weak extension [37] of Lya-
punov’s convexity theorem for vector measures taking values in general infinite-dimensional Banach
spaces. This result guarantees convexity of the norm-closure of the range of a nonatomic Banach-
valued vector measure under certain regularity conditions. Indeed, leveraging Uhl’s theorem together
with the fact that the functional constraints of problem (RCP-E) are all linear (and under the stan-
dard Assumption 1 in Section 4), we are able to prove that the norm-closure of the image space set
associated with (RCP) (the latter denoted as C) is convex. In a sense, the closure operator further
“patches the tears in the fabric” of C, which in the general case might remain as a consequence of
the nonlinearity of the risk measures in ρ, despite P being nonatomic. We then show that, in fact,
this conclusion suffices to establish strong duality of (RCP), as a consequence of convex geometry.
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While the strong duality result we develop in this paper is general and expands substantially
upon existing literature, it is restricted to real-valued risk measures on L1. Indeed, extending the
result to risk measures whose domains are subsets of L1(P,R), importantly Lp(P,R) with p > 1,
does not seem to be a trivial matter, and we conjecture that such an extension would require a
different approach, which we defer to future work. Nonetheless, we may salvage the situation by
introducing a CVaRization operation (i.e., an infimal convolution of a given risk measure with the
CVaR). We show that any risk measure restricted on Lp, p > 1, can be associated with another –
closely related– risk measure that is well-defined and finite on L1. In fact, we are able to show that
the closeness of this new risk measure (finite-valued on L1) to the original one (finite-valued on Lp)
–i.e., the quality of the approximation– can be controlled by the CVaR level of the corresponding
CVaR envelope. More specifically, in the coherent case, we show that the family of approximating
CVaRized risk measures produced via this technique converges, as the CVaR level goes to zero, to
the original (coherent) risk measure in the Mosco sense [38], when the domain of the CVaRization
is restricted to Lp. As a result, we can obtain closely related approximations of our original problem
involving risk measures on some Lp space, such that strong duality is guaranteed by our theory.

Further extensions of our theory are also discussed, including variations of (RCP) in which risk
measures might appear in the objective as well, or cases where the associated linear inequalities might
be substituted by appropriate convex conic inequalities. Additionally, our theory provides insights on
the efficient frontiers of mean-risk models (see, e.g., [1, Section 6.2] or [39, Section 2]) when the latter
are seen as Lagrangian relaxations of constrained programs where the associated dispersion measure
(say) is formulated as a constraint; in particular, our main result readily establishes equivalence of
the aforementioned programs, in a well-defined sense and under general conditions.

Lastly, we demonstrate the versatility of our base model and assumption system by looking at two
particular applications. We first discuss the natural fit of (RCP) in the context of risk-constrained
resource allocation in wireless communication systems, and demonstrate the compatibility of (RCP)
for two especially relevant models, namely, a multiple access interference channel [19, 21], and a
frequency division boradcast channel [2], previously studied in the risk-neutral setting. Subsequently,
we consider the setting of functional risk-constrained supervised learning, in which the associated
loss functions are allowed to be nonconvex [23]. By imposing standard assumptions compatible with
existing literature, we show that strong duality is guaranteed for a wide class of practically relevant
nonconvex risk-constrained learning problems. Further, we recover existing strong duality results
on risk-neutral constrained learning obtained in [23] but under relaxed assumptions, and enable a
unified treatment of risk-constrained regression and classification tasks.

As a remark in passing, we would like to mention that while Lyapunov’s convexity theorem has
many profound applications in various areas with obvious practical interest, this does not (yet) seem
to be the case for its infinite-dimensional extensions, notably by Uhl [37], Knowles [40], and Kadets
and Schechtman [41]. Therefore, we believe that the recognition of the usefulness of Uhl’s theorem
in this paper as a core technical ingredient in proving strong duality of (RCP) in the –hopefully
practically relevant– context of risk-constrained policy optimization under a standard Borel space
setup is quite interesting, just some fifty-five (55) years after its formulation (Uhl’s theorem was
published in 1969 [37]).

1.2 Structure and Notation

The structure of the paper is outlined as follows. To better motivate the story and further illuminate
the applicability of the setting from a technical perspective, in Section 2 we discuss some of the risk
measures covered by our theory resulting in instances of (RCP) of special interest (and its equivalent
reformulation (RCP-E)). In Section 3, we briefly introduce standard Lagrangian duality in the
context of the functional program (RCP). In Section 4, we state and discuss our assumptions as well
as the main result of this work –establishing strong duality of (RCP)–, which we proceed to prove
in Section 5. Additional discussion concerning certain extensions, CVaRizations, and implications
of our main result are given in Section 6. Then, in Section 7, we briefly elaborate on two practically
relevant and general application settings that can be seen as special cases of (RCP), namely risk-
constrained wireless systems resource allocation and risk-constrained learning, and finally conclude
in Section 8.
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Notation –also applicable above–: Bold capital letters (such as A), or calligraphic letters
(such as A), or sometimes plain capital letters (such as A) will denote finite-dimensional sets/spaces,
such as Euclidean spaces. Double stroke letters (such as A) will denote infinite-dimensional sets/s-
paces, such as Banach spaces. Math script letters (such as A ) will denote σ-algebras. Boldsymbol
letters (such as A or a) will denote (random) vectors. The space of p-integrable functions from a
measurable space (Ω,F ) equipped with a finite measure µ : F → R+ to a Banach space A, with
standard notation Lp(Ω,F , µ;A) [1, 29], is abbreviated as Lp(µ,A), as it is also common practice
[29]. The rest of the notation is standard.

2 Risk Measures

As already discussed, problem (RCP) (which is equivalent to (RCP-E) under the conditions men-
tioned in the introduction) is very general and several cases of special interest can be formulated
as particular instances, in addition, of course, to the risk-neutral version of (RCP). We now briefly
discuss some standard risk measures and how they fit the adopted framework, as follows.

2.1 Conditional Value-at-Risk

The CVaR at level β ∈ (0, 1] is defined as [1, 33]

CVaRβ(Z) ≜ inf
t∈R

t+
1

β
E{(Z − t)+}, Z ∈ L1(P,R),

for which (RCP) reduces to

maximize
x,p(·)

go(x)

subject to x ≤ −CVaRβ(−f(p(H),H))
g(x) ≥ 0
(x,p) ∈ X ×Π

, (CVaR)

where β ≜ [β1 β2 . . . βN ] ∈ (0, 1]N is a vector containing the CVaR levels associated with each entry
of the service function f . In this case, the equivalent formulation of (CVaR) in the form of (RCP-E)
is valid by choosing γ = maxi∈N+

N
1/βi, and with corresponding risk envelopes given by [1, Example

6.19]

Ai
γ = {ζ ∈ L∞(P,R)|ζ(·) ∈ [0, 1/βi],P-a.e., and E{ζ} = 1}, ∀i ∈ N+

N .

Note that in the case of CVaR, the resulting functional program may also be stated as

maximize
x,p(·)

go(x)

subject to x ≤ sup
t∈C

t+
1

β
◦ E{−(t− f(p(H),H))+}

g(x) ≥ 0
(x,p) ∈ X ×Π

,

where each risk measure of the corresponding risk constraint amounts to the “reward version” of the
CVaR, the latter being usually defined for minimizing costs. This problem is of course equivalent to

maximize
x,p(·),t

go(x)

subject to x ≤ t+
1

β
◦ E{−(t− f(p(H),H))+}

g(x) ≥ 0
(x,p, t) ∈ X ×Π×C

.

6



As discussed in Section 1.1, this problem has been recently considered in [32] to discover optimal risk-
aware resource allocation policies in the context of wireless systems, albeit in a convex programming
framework, where f(·,H) is of special form and in particular component-wise concave. Our work in
this paper essentially extends strong duality of (CVaR) in the case where f(·,H) is abritrary (and
merely integrable).

2.2 Mean-Absolute Deviation

Another popular special case is that of the Mean-Absolute Deviation with trade-off parameter λ ≥ 0
(i.e., monotone or not) defined as [34, 35]

MADλ(Z) ≜ E{Z}+ λE{|Z − E{Z}|}, Z ∈ L1(P,R),

for which problem (RCP) reduces to

maximize
x,p(·)

go(x)

subject to x ≤ −MADλ(−f(p(H),H))
g(x) ≥ 0
(x,p) ∈ X ×Π

, (MAD)

where λ ≜ [λ1 λ2 . . . λN ] ∈ RN
+ is another vector containing the MAD trade-offs associated with

each entry of the service function f . In this case, (MAD) can be equivalently written in the form of
(RCP-E) by choosing γ = maxi∈N+

N
1 + 2λi, and risk envelopes [1, Example 6.22]

Ai
γ = {ζ ∈ L∞(P,R)|ζ = 1 + ζ ′ − E{ζ ′}, and ∥ζ ′∥L∞ ≤ λi}, ∀i ∈ N+

N .

Similar to the case of CVaR, it is easy to see that the MAD program takes the form

maximize
x,p(·)

go(x)

subject to x ≤ E{f(p(H),H)} − λ ◦ E{|E{f(p(H),H)} − f(p(H),H)|}
g(x) ≥ 0
(x,p) ∈ X ×Π

,

or, equivalently,

maximize
x,p(·),t

go(x)

subject to x ≤ t− λ ◦ E{|t− f(p(H),H)|}
t = E{f(p(H),H)}
g(x) ≥ 0
(x,p, t) ∈ X ×Π×C

.

This paper shows that the (MAD) problem exhibits strong duality for any choice of the weight
vector λ ≥ 0, and for a merely integrable and otherwise arbitrary f(·,H).

2.3 Coherent Risk Measures on L1

Generalizing, there are numerous other risk measures which are compatible with our assumptions
on the vector risk measure ρ. In fact, all coherent risk measures on the space L1 (relative to any
qualifying choice of the probability measure P) are supported under the adopted framework. For
any such risk measure ρ, it is well known that

ρ(Z) = sup
ζ∈A

⟨ζ, Z⟩ = sup
dQ
dP ∈A

E
{
Z(H)

dQ

dP
(H)

}
, for all Z ∈ L1(P,R),
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where the risk envelope A takes the special form [1, Section 6.3]

A = {ζ ∈ L∞(P,R)|⟨ζ, Z⟩ ≤ ρ(Z) for all Z ∈ L1(P,R), ζ ⪰ 0,E{ζ} = 1}

=

{
dQ

dP
∈ L∞(P,R)

∣∣∣∣〈dQ

dP
, Z

〉
≤ ρ(Z), for all Z ∈ L1(P,R)

}
.

In the above, dQ/dP = ζ denotes the Radon-Nikodym derivative of a probability measure Q on
(H,B(H)) relative to P, with the former assumed to be absolutely continuous relative to the latter;
we use the standard notation Q ≪ P.

If ρ is also real-valued, it is continuous in the strong topology on L1(P,R), and its risk envelope
A is consistent with our setting, being in particular a convex bounded and weakly∗-closed (in fact
weakly∗-compact) subset of the set of densities in L∞(P,R) (and independent of each choice of Z).
It follows that ρ admits a distributionally robust representation of the form

ρ(Z) = sup
Q∈M

EQ{Z(H)}, for all Z ∈ L1(P,R),

where

M ≜

{
Q ≪ P

∣∣∣∣〈dQ

dP
, Z

〉
≤ ρ(Z), for all Z ∈ L1(P,R), with

dQ

dP
(·) ≤ γ,P-a.e.

}
⊆

{
Q ≪ P

∣∣Q ≤ γP, on Borel sets
}
.

To further highlight the versatility of (RCP), we would like to emphasize that one can freely “mix-
and-match” any combination of risk measures present in the constraints of (RCP), out of the large
variety of those supported under our assumptions. Such combinations include different choices of
risk measures across the components of the service vector f , e.g., expectations for some components
and CVaRs or MADs for others, as well as combinations of different risk measures for each of the
components of f ; a classical example is that of mean-CVaR trade-offs.

3 Lagrangian Duality

A celebrated approach for dealing with the explicit inequality constraints of the risk-aware problem
(RCP) is by exploiting Lagrangian duality, which has been proven fundamental in analyzing and
efficiently solving constrained convex optimization problems; see, e.g., [3–5]. Note, however, that
since the services f(·,H) appearing in problem (RCP) are nonconcave in general (i.e., with respect
to the first argument corresponding to the policy p), standard results in Lagrangian duality for
convex optimization do not automatically apply. On top of that, one has to incorporate the structural
complexity of the risk measure ρ, which is a nonlinear functional of its argument. As a result,
fundamental properties of expectation (being the most trivial risk measure) which enable an elegant
and straightforward analysis, such as linearity, do not hold for ρ.

The Lagrangian function L : C×Π×RNg ×C → R associated with the risk-constrained problem
(RCP) is defined by scalarizing its constraints as

L(x,p,λ) ≜ go(x) + ⟨λg, g(x)⟩+
〈
λρ,−ρ(−f(p(H),H))− x

〉
,

where λ ≡ (λg,λρ) ∈ RNg ×C are dual multipliers associated with the constraints of (RCP). Then
the dual function D : RNg ×C → (−∞,∞] is defined as

D(λ) ≜ sup
(x,p)∈X×Π

L(x,p,λ).

If the optimal value of problem (RCP) is P∗ ∈ R, it is then easily understood that P∗ ≤ D on
the positive orthant (i.e., for λ ≥ 0), and thus it is most reasonable to consider the dual problem
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infλ≥0 D(λ), which is always convex and whose optimal value

D∗ ≜ inf
λ≥0

D(λ) ∈ (−∞,∞]

serves as the tightest over-estimate of the optimal value of problem (RCP), P∗, when knowing only
D. Then, one of the basic questions in Lagrangian duality is whether we can essentially replace an
original constrained problem with its dual, in the sense that P∗ ≡ D∗; in such a case, we say that the
problem has zero duality gap. Referring to problem (RCP), this would imply that it can be replaced
by the minimax problem

inf
λ≥0

D(λ) ≡ inf
λ≥0

sup
(x,p)∈X×Π

L(x,p,λ),

whose optimal value is D∗. If D∗ is attained, i.e., an optimal multiplier vector exists, then (RCP)
is said to exhibit strong duality. A zero duality gap also implies that problem (RCP) satisfies the
saddle point property (whether a saddle point exists or not), which is expressed as

D∗ = inf
λ≥0

sup
(x,p)∈X×Π

L(x,p,λ) = sup
(x,p)∈X×Π

inf
λ≥0

L(x,p,λ) = P∗.

Zero duality gaps are desirable: Because there is a finite number of constraints, the dual function
is finite-dimensional even though the original functional problem (RCP) is infinite-dimensional.
Additionally, for every choice of the dual variable λ ≥ 0 (and therefore for any optimal multiplier
vector), joint maximization of the Lagrangian L(x,p,λ) over the pair (x,p) ∈ X × Π is separable.
We thus see that duality transforms a constrained problem into an unconstrained problem in a
principled and favorable way and, provided that the original constrained stochastic program (in our
case (RCP)) exhibits zero duality gap or strong duality, presents a general methodological approach
to tackle it. While zero duality gaps are a common and fundamental characteristic of problems in
convex (concave) constrained optimization (under appropriate regularity conditions), proving zero
duality gaps in nonconvex problems such as (RCP) is a much more delicate and challenging task.

4 Main Result

Quite surprisingly, the set of assumptions enabling the dual-domain analysis of problem (RCP) that
we will develop is standard and exactly the same as compared with the relevant literature on the
corresponding risk-neutral related problems; see, e.g., [2, 12, 22, 23] and also Section 1.1.

Assumption 1 (Problem Setting). The following conditions are in effect:
1. The utilities go and g are concave.
2. The feasible set X of ergodic services is convex.
3. The policy feasible set Π is decomposable.
4. The Borel measure P is nonatomica.
5. Problem (RCP) satisfies Slater’s condition (i.e., inequality constraints are strictly feasible).

aRecall that P is nonatomic if for any event E with P(E) > 0, an event E′ ⊆ E exists such that P(E) > P(E′) > 0.

A useful observation is that the conditions comprising Assumption 1 are fully compatible, and can
be easily satisfied in practice. For instance, the space of all (Borel-)measurable functions (policies)
from H to R as well as all spaces of integrable functions Lp(P,R), p ∈ [1,∞], are decomposable
[42], and all those examples can be possible choices for the feasible set Π. A more specific standard
choice of a decomposable feasible set Π, which is relevant in applications, is the uniform box

Π =
{
p : H → R

∣∣ess supP ∥p(·)∥∞ ≤ U
}
,

where U > 0 is an appropriate fixed number, or, the more refined rectangular box

Π =
{
p : H → R

∣∣ess supP pi(·) ≤ U i, i ∈ N+
Np

}
,
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where the U i’s are fixed. In a more delicate setting, another also standard choice for a decomposable
Π is (see, e.g., [2] and references therein)

Π =
{
p : H → R

∣∣p(h) ∈ U(h),P-a.e.
}
,

where U : H ⇒ R is a closed-valued multifunction, which is also closed [1, Section 7.2.3]; this implies
in particular that U admits at least one measurable selection [1, Theorem 7.39]. In other words,
every feasible p ∈ Π may be taken to be a well-behaved Borel-measurable selection of U . Regarding
the rest of the conditions of Assumption 1, all are standard as mentioned above. We would just like
to further point out that condition (4) holds naturally if the Borel measure P has a density with
respect with the Lebesgue measure; this is a valid assumption in numerous practical settings.

We are now in position to state the main result of this work. The detailed proof is presented
next in Section 5.

Theorem 1 (Strong Duality in Risk-Constrained Nonconvex Functional Programming).
Let Assumption 1 be in effect. Then problem (RCP) has zero duality gap, i.e., P∗ = D∗. In fact,
(RCP) exhibits strong duality, i.e., optimal dual variables exist.

5 Proof of Theorem 1

Hereafter, we let Assumption 1 be in effect. We will work with the utility-constraint set –also called
an image space set [28, 30]– associated with problem (RCP) and defined as

C ≜

(δo, δr, δd)

∣∣∣∣∣∣
go(x) ≥ δo
−ρ(−f(p(H),H))− x ≥ δr
g(x) ≥ δd

, for some (x,p) ∈ X ×Π

 .

Following [22, 23], showing that C is convex and the strict feasibility of problem (RCP) (i.e., Slater’s
condition in Assumption 1) would suffice to ensure strong duality of (RCP), as a relatively simple
consequence of the supporting hyperplane theorem; see Section 5.3, or [22, Theorem 1 and its proof],
or [23, Appendix A] for the details. In fact, this is a special part of a far more general story; see, e.g.,
[30]. Proving convexity of C is nontrivial in the case of (RCP) though, and does not follow from the
analyses presented in the aforementioned articles. This is due to the nonlinearity of the functionals
present in the risk constraints of (RCP), in sharp contrast to standard problems considered in the
literature (e.g., in [2, 12, 22, 23]), where the corresponding constraints evaluate the vector f solely
through linear functionals, i.e., expectations.

The Challenge of Risk: From the discussion above it follows that ultimately we would like to
prove that the set C is convex. This would mean that if (δo, δr, δd) ∈ C for (x,p) ∈ X × Π and if
(δ′o, δ

′
r, δ

′
d) ∈ C for (x′,p′) ∈ X ×Π, then, for every α ∈ [0, 1], it should be the case that

α(δo, δr, δd) + (1− α)(δ′o, δ
′
r, δ

′
d) ∈ C.

In other words, we would have to show that there exists another pair (xα,pα) ∈ X ×Π, such that

go(xα) ≥ αδo + (1− α)δ′o,

−ρ(−f(pα(H),H))− xα ≥ αδr + (1− α)δ′r and

g(xα) ≥ αδd + (1− α)δ′d.

By choosing xα = αx+(1−α)x′ ∈ X (by assumption, X is convex), and appealing to the concavity
of go and g, the proof would be complete if we showed that, for every α ∈ [0, 1], there is a policy
pα ∈ Π, such that

−ρ(−f(pα(H),H)) ≥ −αρ(−f(p(H),H))− (1− α)ρ(−f(p′(H),H)). (1)
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Unfortunately, proving that C is convex for the risk-constrained setting seems impossible, and we
conjecture that such an assertion is probably false, at least unless we enforce additional structural
conditions (on top of the fully compatible set of conditions comprising Assumption 1).

Fortunately though, what we can indeed show is convexity of the closure of C; establishing this
key result constitutes the core of the proof of Theorem 1. Then, convexity of cl(C) is combined with
the fact that the point (P∗,0,0) cannot be in the interior of cl(C), enabling a separating hyperplane
argument for the pair (P∗,0,0) and cl(C), which together with Slater’s condition (i.e., strict feasi-
bility) implies strong duality for problem (RCP); this step is similar to that in the risk-neutral case,
where C is a convex set, see, e.g., [22]. We believe that establishing strong duality for (RCP) using
merely convexity of cl(C) is interesting, as it reveals a substantially weaker chain of self-contained
logical arguments sufficient to prove Theorem 1 as compared with the risk-neutral setting (a spe-
cial case). For an alternative, though non-elementary and more involved way of establishing strong
duality for (RCP) –again by exploiting convexity of cl(C) and Slater’s condition–, see Appendix C.

In passing, note that (1) is trivially true and thus convexity of C is implied in the special case
where f(·,h) is concave for every h ∈ H and Π is a convex set (instead of a decomposable one),
simply by choosing pα as a convex combination of p and p′, and exploiting convexity and positive
homogeneity of the vector risk measure ρ; this is a standard case of convex programming.

5.1 Preliminaries on Vector Measures in Banach Spaces

Let us first introduce some basic definitions and notation from the study of vector measures taking
values in general, infinite-dimensional Banach spaces. For a comprehensive treatment of the subject,
the reader is referred to the classical monograph [29].

Suppose that X is a possibly infinite-dimensional Banach space. A vector measure on a measur-
able space (Ω,F ) is a function G : F → X. A vector measure G is called countably additive (in
the norm topology of X) in the same fashion as a regular real-valued measure. The variation of a
vector measure G is another function on sets |G| : F → R+ defined as

|G|(E) ≜ sup
π is a finite partition of E

∑
A∈π

∥G(A)∥X.

Then G is suggestively said to be of bounded variation whenever |G|(Ω) < ∞. A vector measure G
is called nonatomic if every event E ∈ F such that G(E) ̸= 0 can be partitioned into events E′

and E\E′ such that G(E′) ̸= 0 and G(E\E′) ̸= 0; in other words, every event of non-zero measure
can be split into two events of non-zero measure.

Further, in the following we will be using the concept of a Bochner integral, which is a now stan-
dard extension of the Lebesgue integral for functions taking values in infinite-dimensional Banach
spaces. While we do not provide a formal description here, the reader is referred to the excellent
exposition in [29, Section II], which is a standard textbook on the subject.

Lastly, our analysis will be based on the following extension to the celebrated convexity theorem
of A. A. Lyapunov, due to Uhl [37, Theorem 1 and last paragraph before the References section], see
also [29, Theorem IX.1.10]. This also classical result conveniently generalizes the convexity theorem
to infinite-dimensional Banach spaces, albeit with some nontrivial provisioning on the topological
properties of the range of the involved vector measure.

Theorem 2 ([37] Weak Lyapunov Theorem for the Strong Topology). Let (Ω,F ) be a
measurable space, and let X be any Banach space. Let G : F → X be a countably additive vector
measure of bounded variation. If G is nonatomic and admits a Radon-Nikodym representation, i.e.,
there exist a finite measure µ : F → R+ and a function f ∈ L1(µ,X) such that

G(E) =

∫
E

f(ω)dµ(ω), E ∈ F ,

then the norm closure of the range G(F ) is convex and norm-compact.
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5.2 Core of the Proof: Convexity of cl(C)
We identify with X the Banach space of all real-valued sequences bounded in the sup norm, i.e.,
X = ℓ∞. For a feasible policy p ∈ Π, provisionally define the vector measure Gp : B(H) → X as

Gp(E) ≜



∫
E
λ0(h)f(p(h),h)dP(h)∫

E
λ1(h)f(p(h),h)dP(h)

...∫
E
λn(h)f(p(h),h)dP(h)

...

 =


E{1E(H)λ0(H)f(p(H),H)}
E{1E(H)λ1(H)f(p(H),H)}

...
E{1E(H)λn(H)f(p(H),H)}

...

, E ∈ B(H),

where B ≜ {λn}n∈N is a countable base (i.e., a dense subset) on L1(P,R), for convenience consisting
of simple functions on disjoint dyadic cubes on H with rational coefficients (the construction of such
a dense subset is a standard procedure; see, e.g., [43, Chapter 13]). We will be later using the base
B to approximate elements in Ai

γ , i ∈ N+
N , each of which is a bounded subset of L∞(P,R), and

thus of L1(P,R) (P is finite); therefore, without loss of generality we may very well assume that
|λn| ≤ γ everywhere on H, and we do so hereafter (otherwise, just take any qualifying countable
base on L1(P,R) and project each of its members onto the box [−γ, γ] –choose γ ∈ Q if needed and
note that a clipped simple function is itself a simple function–; then, for every ζ ∈ Ai

γ , there exists
a subsequence {λn}n∈K,K ⊆ N converging to ζ in L1, and in fact

0 ≤ ∥proj[−γ,γ](λn)− ζ∥L1 = ∥proj[−γ,γ](λn)− proj[−γ,γ](ζ)∥L1 ≤ ∥λn − ζ∥L1 −→
n→∞

0,

due to nonexpansiveness of the projection map). It is then guaranteed that, for every E ∈ B(H),
all entries of the vector Gp(E) are well-defined and finite.

For every E ∈ B(H), it also readily follows that (below the ordinary absolute value | · | is taken
component-wise when presented with a vector as its input)

∥Gp(E)∥ℓ∞ = sup
n∈N

∥E{1E(H)λn(H)f(p(H),H)}∥∞

≤ sup
n∈N

∥E{1E(H)|λn(H)||f(p(H),H)|}∥∞

≤ γ∥E{1E(H)|f(p(H),H)|}∥∞ < ∞,

verifying that Gp(E) is an element of X for every qualifying E. Further, we can show that, by its
construction, Gp can be represented as a Bochner integral as (this is nontrivial; see Appendix A for
a detailed verification)

Gp(E) =

∫
E

ΛB(h)⊗ f(p(h),h)dP(h), E ∈ B(H),

where “⊗” denotes the Kronecker product, and where one can verify that ΛB ≜ [λ0 λ1 . . . λn . . .] ∈
X (see, e.g., [29, Example II.2.10]); note that ΛB(·)⊗ f(p(·), ·) is X-valued and Bochner integrable
as well (follows from [29, Theorem II.2.2] –again, see Appendix A for details–, also see proof of
Lemma 3 below). Then, it follows that Gp is both countably additive and of bounded variation [29,
Theorem II.2.4 (iii) and (iv)]. We also use the familiar probabilistic notation

Gp(E) = E{1E(H)ΛB(H)⊗ f(p(H),H)}, E ∈ B(H),

with an understanding that expectation here is in the Bochner sense (i.e., expectation of a random
element taking values in an infinite-dimensional Banach space).
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Using the construction above, and together with another feasible policy p′ ∈ Π, we define another
vector measure G : B(H) → X as

G(E) ≜ E
{
1E(H)ΛB(H)⊗

[
f(p(H),H)
f(p′(H),H)

]}
, E ∈ B(H),

which will serve as our main construction for the rest of the analysis. The next key result is concerned
with the structure of the range of G, with its proof also verifying that G is essentially an interleaved
concatenation of the vector measures Gp and Gp′ , as initially defined above.

Lemma 3. The norm (strong) closure of the range of G

G(B(H)) = {x ∈ X|x = G(E), for some E ∈ B(H)}

is convex and norm-compact.

Proof of Lemma 3. We need to verify the conditions under which Theorem 2 (Uhl) is valid. First,
it is true that

E
{∥∥∥∥ΛB(H)⊗

[
f(p(H),H)
f(p′(H),H)

]∥∥∥∥
ℓ∞

}
= E

{
sup
n∈N

∥∥∥∥λn(H)

[
f(p(H),H)
f(p′(H),H)

]∥∥∥∥
∞

}
≤ E

{
sup
n∈N

|λn(H)|
∥∥∥∥[f(p(H),H)
f(p′(H),H)

]∥∥∥∥
∞

}
≤ γE

{∥∥∥∥[f(p(H),H)
f(p′(H),H)

]∥∥∥∥
∞

}
≤ γE

{∥∥∥∥[f(p(H),H)
f(p′(H),H)

]∥∥∥∥
1

}
< ∞.

This shows that

ΛB(H)⊗
[
f(p(H),H)
f(p′(H),H)

]
∈ L1(P,X),

which implies that G is countably additive [29, Theorem II.2.4 (iii)], has bounded variation [29,
Theorem II.2.4 (iv)] and evidently is Radon-Nikodym representable.

To show that G is nonatomic, consider its primitive construction (this is justified in the same
way as for Gp; also see Appendix A) and suppose that E ∈ B(H) is such that

G(E) ̸= 0 ⇐⇒ E{1E(H)λn(H)fi(p̃(H),H)} ≠ 0, for some n ∈ N, i ∈ N+
N and for p̃ = p or p′.

Note that we necessarily have P(E) > 0 (for otherwise G(E) = 0). Without loss of generality take
p̃ = p and n = i = 1. Then, by a lemma of Blackwell [44, Lemma], nonatomicity of P implies the

existence of a Borel subset Ẽ ⊆ H such that P(Ẽ) = P(H)/2 = 1/2, for which

E{1E∩Ẽ(H)λ1(H)f1(p(H),H)} =
1

2
E{1E(H)λ1(H)f1(p(H),H)} ≠ 0.

Letting E′ ≜ E
⋂

Ẽ, this necessarily implies that G(E′) ̸= 0 as well as G(E\E′) ̸= 0; in fact,
observe that necessarily E′ ⊂ E and that P(E′) > 0. By definition, it follows that G has no atoms.
Consequently, the conditions of Theorem 2 are fulfilled. Enough said. ■

The conclusions of Lemma 3, in particular convexity of norm closure of the range of G, are
sufficient to ensure convexity of the (norm) closure of C. To see this, let us first consider the range
G(B(H)) of G. Of course z = G(H) and z′ = G(∅) = 0 are both elements of G(B(H)). Therefore,
Lemma 3 implies that, for every α ∈ [0, 1], the convex combination αz + (1 − α)z′ ≡ αz lies in

13



the norm closure of G(B(H)). In other words, for each α ∈ [0, 1], there exists a sequence of events
{Eα

n ∈ B(H)}n∈N such that

lim
n→∞

∥αz −G(Eα
n )∥ℓ∞ = 0.

This in particular implies that (note that limits here are with respect to the natural norm of X)

lim
n→∞

∥αGp(H)−Gp(E
α
n )∥ℓ∞ = 0,

and by a symmetric argument,

lim
n→∞

∥(1− α)Gp′(H)−Gp′((Eα
n )

c)∥ℓ∞ = 0.

Now, we may define the sequence of policies

pn
α(h) = 1Eα

n
(h)p(h) + 1H\Eα

n
(h)p′(h) =

{
p(h), if h ∈ Eα

n

p′(h), if h ∈ H\Eα
n

, n ∈ N.

Of course, it holds that pn
α ∈ Π for all n ∈ N because Π is decomposable. Then, it follows that

∥Gpn
α
(H)− αGp(H)− (1− α)Gp′(H)∥ℓ∞

= ∥Gpn
α
(Eα

n ) +Gpn
α
((Eα

n )
c)− αGp(H)− (1− α)Gp′(H)∥ℓ∞

= ∥Gp(E
α
n ) +Gp′((Eα

n )
c)− αGp(H)− (1− α)Gp′(H)∥ℓ∞

≤ ∥Gp(E
α
n )− αGp(H)∥ℓ∞ + ∥Gp′((Eα

n )
c)− (1− α)Gp′(H)∥ℓ∞ ,

which implies that

lim
n→∞

∥Gpn
α
(H)− αGp(H)− (1− α)Gp′(H)∥ℓ∞ = 0.

Equivalently, we have shown that for every ε > 0, there exists a positive number N(ε) > 0, such
that for every n > N(ε),

∥E{ΛB(H)⊗ f(pn
α(H),H)}

− αE{ΛB(H)⊗ f(p(H),H)} − (1− α)E{ΛB(H)⊗ f(p′(H),H)}∥ℓ∞ ≤ ε.

Evidently, N(ε) is uniform over the individual elements of the countable basis B. We can rewrite
the preceding expression as

|E{λm(H)fi(p
n
α(H),H)}

− αE{λm(H)fi(p(H),H)} − (1− α)E{λm(H)fi(p
′(H),H)}| ≤ ε,

for every pair (m, i) ∈ N × N+
N . Now, for each choice of ζ ∈ Ai

γ , i ∈ N+
N , we can extract a

subsequence {λm}m∈K,K ⊆ N converging to ζ in L1. A consequence of this is the existence of a
further sub-subsequence {λm}m∈K′ , K′ ⊆ K such that

λm −→
K′∋m→∞

ζ, P-a.e.

Then, by dominated convergence, we have for each i-th element of the service vector f ,

E{λm(H)fi(p
n
α(H),H)} −→

K′∋m→∞
E{ζ(H)fi(p

n
α(H),H)},

E{λm(H)fi(p(H),H)} −→
K′∋m→∞

E{ζ(H)fi(p(H),H)} and

E{λm(H)fi(p
′(H),H)} −→

K′∋m→∞
E{ζ(H)fi(p

′(H),H)}.
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Therefore, we have that, for every ε > 0 there exists a positive number N(ε) > 0, such that for
every n > N(ε) and for every ζ ∈ Ai

γ ,
2

|E{ζ(H)fi(p
n
α(H),H)}

− αE{ζ(H)fi(p(H),H)} − (1− α)E{ζ(H)fi(p
′(H),H)}| ≤ ε, i ∈ N+

N .

The last expression implies in particular that∣∣∣∣ inf
ζ∈Ai

γ

E{ζ(H)fi(p
n
α(H),H)}

− inf
ζ∈Ai

γ

E{ζ(H)[αfi(p(H),H) + (1− α)fi(p
′(H),H)]}

∣∣∣∣ ≤ ε, i ∈ N+
N ,

which is the same as∥∥∥∥ inf
ζ∈AS

γ

E{ζ(H) ◦ f(pn
α(H),H)} − inf

ζ∈AS
γ

E{ζ(H) ◦ [αf(p(H),H) + (1− α)f(p′(H),H)]}
∥∥∥∥
∞

≤ ε.

By risk duality, we obtain that, for every ε > 0, there is N(ε) > 0 such that for every n > N(ε), it
is true that

∥ − ρ(−f(pn
α(H),H)) + ρ(−αf(p(H),H)− (1− α)f(p′(H),H))∥∞ ≤ ε.

This implies that, for every choice of p ∈ Π, p′ ∈ Π, for every α ∈ [0, 1] and for every ε > 0, there
exists at least one policy pε

α ∈ Π (in fact, a whole family of such policies) such that

−ρ(−f(pε
α(H),H)) + ρ(−αf(p(H),H)− (1− α)f(p′(H),H)) ≥ −ε1.

This fact together with convexity of ρ further implies that

−ρ(−f(pε
α(H),H)) ≥ −ρ(−αf(p(H),H)− (1− α)f(p′(H),H))− ε1

= −αρ(−f(p(H),H))− (1− α)ρ(−f(p′(H),H))− ε1.

Let us now see how the preceding fact implies that cl(C) is a convex set. Let (δo, δr, δd) ∈ C for
(x,p) ∈ X × Π and let (δ′o, δ

′
r, δ

′
d) ∈ C for (x′,p′) ∈ X × Π. Also choose a sequence {εn > 0}n∈N

decreasing to zero, say εn ≜ 1/(n + 1), n ∈ N. By our discussion above, we have actually shown
that, for every α ∈ [0, 1], it holds that, for every n,

α(δo, δr − εn1, δd) + (1− α)(δ′o, δ
′
r − εn1, δ

′
d) ∈ C.

To verify this claim, observe that, for every n ∈ N, there exists a policy pεn
α ∈ Π such that for the

pair (xα = αx+ (1− α)x′,pεn
α ) ∈ X ×Π (by assumption, X is convex) it is true that

− ρ(−f(pεn
α (H),H))− xα

= −ρ(−f(pεn
α (H),H))− αx− (1− α)x′

≥ −αρ(−f(p(H),H))− (1− α)ρ(−f(p′(H),H))− αx− (1− α)x′ − εn1

= −αρ(−f(p(H),H))− αx− (1− α)ρ(−f(p′(H),H))− (1− α)x′ − εn1

≥ αδr + (1− α)δ′r − εn1,

2Note that the basic fact that enables interchanging the order of limits relative to n and m above is that convergence over
n is uniform over m, i.e., the index of the elements in the dense set B. Then, we reiterate the same procedure for every ζ in
each of the risk envelopes Ai

γ , i ∈ N+
N , by extracting a different subsequence out of B each time.
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or, equivalently,

−ρ(−f(pεn
α (H),H))− xα ≥ α(δr − εn1) + (1− α)(δ′r − εn1).

This means that the pair (xα,p
εn
α ) ∈ X ×Π is such that

go(xα) ≥ αδo + (1− α)δ′o,

−ρ(−f(pεn
α (H),H))− xα ≥ α(δr − εn1) + (1− α)(δ′r − εn1) and

g(xα) ≥ αδd + (1− α)δ′d,

verifying our claim. But, evidently,

lim
n→∞

α(δo, δr − εn1, δd) + (1− α)(δ′o, δ
′
r − εn1, δ

′
d) = α(δo, δr, δd) + (1− α)(δ′o, δ

′
r, δ

′
d),

which of course implies that

α(δo, δr, δd) + (1− α)(δ′o, δ
′
r, δ

′
d) ∈ cl(C),

as a limit point of elements in C. Finally, convexity of cl(C) follows in light of the next elementary
result, whose proof we also present for completeness.

Proposition 4. Suppose that a set A ⊆ RN has the property that all convex combinations of any
two points in A belong to its closure, i.e.,

x ∈ A and y ∈ A =⇒ ∀α ∈ [0, 1], αx+ (1− α)y ∈ cl(A).

Then cl(A) is (closed) convex.

Proof of Proposition 4. Let x ∈ cl(A) and y ∈ cl(A). Then, we can find sequences {xn ∈ A}n∈N
and {yn ∈ A}n∈N such that

x = lim
n→∞

xn and y = lim
n→∞

yn,

where the limits are interpreted in the standard Euclidean sense. So, given α ∈ [0, 1],

αx+ (1− α)y = α lim
n→∞

xn + (1− α) lim
n→∞

yn

= lim
n→∞

αxn + (1− α)yn.

However, by assumption for the set A it holds that, for every n ∈ N,

αxn + (1− α)yn ∈ cl(A),

and the sequence converges; therefore it must converge in cl(A), and the limit is αx + (1 − α)y.
Therefore, cl(A) is closed convex. ■

By a trivial application of Proposition 4, we obtain that cl(C) is a (closed) convex set, and the proof
is now complete. ■

5.3 Convexity of cl(C) Implies Strong Duality

Let us now finish the proof of Theorem 1 by exploiting the convexity of the closure of the utility-
constraint set

C =

(δo, δr, δd)

∣∣∣∣∣∣
go(x) ≥ δo
−ρ(−f(p(H),H))− x ≥ δr
g(x) ≥ δd

, for some (x,p) ∈ X ×Π

 ,
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the expression of which we repeat here for convenience, together with condition (5) of Assumption
1, namely that problem (RCP) satisfies Slater’s condition. Let us recall the Lagrangian associated
with problem (RCP), i.e.,

L(x,p,λ) = go(x) + ⟨λg, g(x)⟩+
〈
λρ,−ρ(−f(p(H),H))− x

〉
,

where (x,p,λ) ∈ C×Π× RNg ×C, for which we already know that

inf
λ≥0

sup
(x,p)∈X×Π

L(x,p,λ) = D∗ ≥ P∗.

Strong duality of (RCP) will be immediate if we can show that D∗ ≤ P∗.
Our discussion substantially extends [22, Theorem 1 and its proof] and [23, Appendix A], and

is eventually based on a standard application of the supporting hyperplane theorem (see e.g., [5,
Proposition 1.5.1]), which we outline below for completeness. Note that the same technique would
be applicable in case our initial problem (RCP) was originally convex. The reason is that the only
fact needed at this point is the “top-level” convexity of the cl(C), which would come for free if
(RCP) was itself a convex program. Before we assemble everything together, we need an additional
technical result.

Lemma 5 (Point on the Shell). (P∗,0,0) is not in the interior of cl(C).

Proof of Lemma 5. First, we observe that the point (P∗,0,0) cannot be in the interior of C, for
otherwise there would exist an ε > 0 such that (P∗+ε,0,0) ∈ C, contradicting P∗ being the optimal
value of the initial constrained problem. In fact, if (δ+o , δ

+
r , δ

+
d ) > 0, every perturbation of the form

(P∗,0,0) + (δ+o , δ
+
r , δ

+
d ) = (P∗ + δ+o , δ

+
r , δ

+
r )

cannot be in C either; if it was, this would imply the existence of a pair (x,p) ∈ X ×Π attaining a
strictly larger objective than P∗, while also keeping all the constraints inactive. Therefore, it follows
that the open orthant (an open convex set)

D = {(x,y, z)|(x,y, z) = (P∗ + δ+o , δ
+
r , δ

+
r ), (δ+o , δ

+
r , δ

+
r ) > 0}

is disjoint from C.
Let us show that, in fact, D and cl(C) are also disjoint. Note that D has a nonempty interior in

the standard Euclidean topology of C. Therefore, for every element of D there exists an open ball of
the same dimension as that of C entirely contained in D and having that element of D as its center.
Next, if an element of D, say d, was in cl(C), there should exist a sequence contained entirely in C
converging to d. However, since d is contained in an open ball, say Bd, entirely contained in D and
of the same dimension as that of C, every sequence in C converging to d must break into that open
ball. This implies that the aforementioned sequence in C converging to d must have elements also
in Bd. This is absurd, since C

⋂
Bd = ∅ (due to the fact that C

⋂
D = ∅).

Now suppose that (P∗,0,0) is in the interior of cl(C). Then, there must exist another open ball,
say B∗, of the same dimension as that of C, completely contained in cl(C) and centered at (P∗,0,0).
This means that there exists a positive perturbation vector (δ+o , δ

+
r , δ

+
r ) > 0 such that the point

(P∗ + δ+o , δ
+
r , δ

+
r ) is in B∗. This is also absurd, because (P∗ + δ+o , δ

+
r , δ

+
r ) ∈ D and D

⋂
cl(C) = ∅, as

shown above. ■

The complete argument based on a standard application of the supporting hyperplane theorem
now follows.

Theorem 6 (Supporting Hyperplane Theorem). Let A ⊆ Rn be a nonempty convex set. If
δ∗ ∈ Rn is not in the interior of A, then there exists a hyperplane passing through δ∗ such that A
is in one of its closed halfspaces. In other words, there exists a vector λ ̸= 0 such that, for every
δ ∈ A, it holds that ⟨λ, δ∗⟩ ≥ ⟨λ, δ⟩.
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Remark 1. Note that the inequality in the supporting hyperplane theorem can be equivalently
reversed by flipping the sign of the support vector λ.

We start by observing that since (RCP) satisfies Slater’s condition, it follows that C is nonempty,
and the same follows for cl(C). So cl(C) is a nonempty (closed) convex set. By Lemma 5, we also
know that the point (P∗,0,0) is not in the interior of cl(C). We can then apply the supporting
hyperplane theorem on the pair cl(C) and (P∗,0,0), implying existence of a vector of multipliers
(λo,λg,λρ) ̸= 0 such that, for every (δo, δr, δd) ∈ cl(C), it is true that

λoδo + ⟨λg, δr⟩+ ⟨λρ, δd⟩ ≤ λoP
∗.

It readily follows that, in fact, (λo,λg,λρ) ≥ 0. Indeed, if any component of (λo,λg,λρ) was
negative, then we could choose (δo, δr, δd) ∈ C ⊆ cl(C) such that the corresponding inner product
becomes arbitrarily large (note that C is unbounded below), eventually violating the inequality
above, regardless of the sign of P∗.

The second fact we may show is that λo ̸= 0, which implies that λo > 0. Again, if λo = 0, then
we would have that

⟨λg, δr⟩+ ⟨λρ, δd⟩ ≤ 0.

But (λg,λρ) ̸= 0 (i.e., there is at least one nonzero component) and (λg,λρ) ≥ 0 (shown above),
and problem (RCP) satisfies Slater’s condition, so the preceding inequality is also absurd.

As a result, we may divide by λo > 0, showing that there is (λ⋆
g ≜ λg/λo,λ

⋆
ρ ≜ λρ/λo) ≥ 0,

such that, for every (δo, δr, δd) ∈ cl(C), it holds that

δo + ⟨λ⋆
g, δr⟩+ ⟨λ⋆

ρ, δd⟩ ≤ P∗.

By construction of the set cl(C) (as the closure of C), we obtain in particular that

L(x,p,λ⋆) = go(x) + ⟨λ⋆
g, g(x)⟩+

〈
λ⋆
ρ,−ρ(−f(p(H),H))− x

〉
≤ P∗,

for every pair (x,p) ∈ X × Π, since all such pairs correspond to points included in C ⊆ cl(C). This
further implies that we are allowed to maximize both sides of the inequality over all possible (x,p),
yielding

−∞ < D∗ = inf
λ≥0

sup
(x,p)∈X×Π

L(x,p,λ)

≤ sup
(x,p)∈X×Π

L(x,p,λ⋆) ≤ P∗,

and we are done. ■

6 Extensions and Implications

6.1 Model Generalizations

Let us now briefly demonstrate how our main result in Theorem 1 can be applied to certain, possibly
less obvious variations or generalizations of the base model in (RCP).

Firstly, it readily follows that strong duality of problem (RCP) implies strong duality for problems
in which risk components also appear in the objective. To see this, consider the simplistic problem

∞ > P∗ = maximize
x,p(·)

go(x)− ρ(−f(p(H),H))

subject to g(x) ≥ 0
(x,p) ∈ X ×Π

, (RCP′)

where ρ : L1(P,R) → R is a convex, lower semicontinuous, and positively homogeneous risk measure,
and f : R×H → R is an arbitrary cost function such that f(·,H) ∈ L1(P,R). Evidently, the value
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of (RCP′), P∗, coincides with that of the problem

P̄∗ ≜ maximize
x,t,p(·)

go(x) + t

subject to t ≤ −ρ(−f(p(H),H))
g(x) ≥ 0
(x, t,p) ∈ X × R×Π

,

and then it readily follows that (RCP′) exhibits strong duality, assuming it satisfies Assumption 1.
To see this, we may define the corresponding Lagrangian as

L̄(x, t,p,λ) ≜ go(x) + t+ ⟨λg, g(x)⟩+ λρ (−ρ(−f(p(H),H))− t) ,

where λ ≡ (λg, λρ) ∈ RNg × R are the multipliers associated with the dualized constraints. Then,
from Theorem 1, we obtain that

P∗ ≡ P̄∗ = D̄∗ ≜ inf
λ≥0

sup
(x,t,p)∈X×Π

L̄(x, t,p,λ)

= inf
λ≥0

sup
(x,p)∈X×Π

go(x)− λρρ(−f(p(H),H)) + ⟨λg, g(x)⟩+ sup
t∈R

t(1− λρ)

= inf
λg≥0

sup
(x,p)∈X×Π

go(x)− ρ(−f(p(H),H)) + ⟨λg, g(x)⟩ = D∗,

where by inspection we observe that the choice λρ = 1 is optimal (since otherwise D̄∗ = ∞). Hence,
we verify that P∗ = D∗ and, in fact, (RCP′) must necessarily exhibit strong duality.

Another, perhaps more trivial, extension of our base risk-constrained setting would be qualifying
problems of the form

maximize
x,p(·)

go(x)

subject to w(x) ≤ −ρ(−f(p(H),H))
g(x) ≥ 0
(x,p) ∈ X ×Π

,

where w is a convex function. Indeed, the proof would follow exactly the developments of Section 5,
requiring only certain trivial minor modifications. This was omitted for simplicity, since (RCP) was
inspired by well-known resource allocation problems, where w(x) = x; see, e.g., Sections 1.1 and 7.

Putting it altogether, we see that Theorem 1 is applicable to general risk-over-risk problems of
the form

maximize
x,p(·)

go(x) +

No∑
j=1

−ρoj(−fo
j (p(H),H))

subject to w(x) ≤ −ρ(−f(p(H),H))
g(x) ≥ 0
(x,p) ∈ X ×Π

, (ROR)

under the appropriate structural conditions on the involved risk measures and service functions, as
those are implied by the discussion above.

Lastly, we conjecture that Theorem 1 can be established for more general conic formulations of
(RCP) (that is, replacing inequality constraints by convex conic inequalities), by properly extending
our proof, for instance utilizing results developed in [30]; see also Theorem 8 discussed later in
Appendix C. This more technical treatment is omitted here, for simplicity of exposition.

6.2 CVaRizations and the Case of Risk Measures on Lp, p > 1

The duality theory developed so far does not readily extend to real-valued convex, lower semicontin-
uous and positively homogeneous risk measures on the space Lp(P,R), for p > 1. Thus, it remains
an open problem to show that Theorem 1 or some version of it holds for such risk measures. While
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we leave a complete answer to this question for future work, we conjecture that such an extension of
our main result would probably need to rely on another construction, or different result from Uhl’s
theorem (Theorem 2); one possibility could be the strong Lyapunov theorem for the weak topology,
due to Knowles (see [40], also [29, Theorem IX.1.4]).

Still, due to the fact that many useful risk measures are naturally defined on favorable subsets
of L1(P,R) –such as the reflexive spaces Lp(P,R), p ∈ (1,∞); a classical example is the mean-
upper-semideviation of order p [1, Example 6.23]–, it remains interesting to investigate ways to
approximate a risk measure on Lp(P,R), p > 1, via another related risk measure taking finite values
on L1(P,R), so that Theorem 1 can still be applied by relying on this approximation. One general
way to do this is via a CVaRization operation. In particular, given some proper, lower semicontinuous
functional ρ on Lp(P,R), p ∈ [1,∞), we define its CVaR envelope at level β ∈ (0, 1], denoted by

ρβ : L1(P,R) → R ∪ {±∞} ≜ R, as

ρβ(Z) ≡ (ρ □ CVaRβ)(Z) ≜ inf
Y ∈L1(P,R)

{ρ (Z − Y ) + CVaRβ(Y )},

where we are dropping dependencies on H throughout this section for brevity of exposition. Despite
ρ being finite-valued only on Lp(P,R) ⊂ L1(P,R), the infimal convolution of ρ with the CVaR
ensures that the domain of the resulting envelope is the whole space L1(P,R) (indeed, see [45,
Theorem 2.2]). Let us also define the meet of two extended real-valued functionals ρ1 and ρ2 as
(ρ1 ∧ ρ2)(Z) = min{ρ1(Z), ρ2(Z)}. In what follows, we invoke the following blanket assumption.

Assumption 2. The functional ρ : Lp(P,R) → R, p ∈ [1,∞), is proper, convex, and lower semi-
continuous. Further, for every β ∈ [0, 1], dom ρ∗ −Aβ is a neighbourhood of the origin, where Aβ

is the risk envelope of CVaRβ, with CVaR0 ≜ ess sup.

Let us note that the above regularity condition (i.e. Assumption 2) is standard (e.g. see [46, Chapter
9]), and it can further be relaxed, if necessary, as shown in [47].

Theorem 7 (CVaRizations). Let ρ be a risk measure satisfying Assumption 2, and consider its
CVaR envelope ρβ ≡ ρ □ CVaRβ : Lr(P,R) → R, for r ∈ [1, p] and β ∈ (0, 1]. The following hold:
1. If r > 1, ρβ is exact (i.e., the infimum is attained).

2. inf ρβ = inf ρ+inf CVaRβ. Additionally, argmin ρβ ⊇ argmin ρ+argminCVaRβ, with equality
if inf ρ is a real number and ρβ is exact.

3. If ρ is subadditive, then the envelope ρβ is subadditive on L1, and it is the largest subadditive

minorant of ρ ∧ CVaRβ. In fact, if the meet is subadditive, then ρβ = ρ ∧ CVaRβ.
4. The envelope ρβ is convex continuous on L1(P,R) (thus subdifferentiable), and admits

(ρ □ CVaRβ)(Z) = sup
ζ∈Aβ

{⟨ζ, Z⟩ − ρ∗(ζ)} ,

∂(ρ □ CVaRβ)(Z) = argmax
ζ∈Aβ

{⟨ζ, Z⟩ − ρ∗(ζ)} .

Further, ρβ is monotone and translation equivariant, even if ρ is not.
5. If ρ is positively homogeneous, then ρβ coherent. In this case, ρβ = (ρ∗β)

∗ and

ρ∗β = ρ∗ +CVaR∗
β ≡ δ

Âβ
,

where Âβ =
{
ζ ∈ A

∣∣ζ ≤ 1/β, ζ ≥ 0,E{ζ} = 1
}
and δ

Âβ
is the indicator to Âβ. Further, if ρ is

itself coherent, then Âβ =
{
ζ ∈ A

∣∣ζ ≤ 1/β
}
, and letting r = p > 1, ρβ converges in the Mosco

sense3 to ρ, as β ↘ 0.

Proof of Theorem 7. We start by proving the first statement. If r > 1, then the domain of the
CVaR envelope ρβ is a reflexive Banach space. This, along with the qualification condition given in
Assumption 2 implies that the infimal convolution is exact (see [49] and [45, Theorem 3.4]).

3A precise definition of Mosco convergence can be found in [48].
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The second and third statements follow by direct application of [45, Theorems 2.3 and 2.4].
For the fourth statement we observe that infimal convolution preserves convexity and it holds that
ρ∗β = ρ∗ + (CVaRβ)∗ (e.g. [45, Theorems 3.1, 3.2]). Utilizing the uncertainty set of CVaR, we also

know that (CVaRβ)∗ = δAβ
(i.e. it is an indicator function). The proof of this statement then follows

by employing [45, Theorem 3.3].
It remains to show the fifth statement. Firstly, we show that ρβ is coherent if ρ is positively

homogeneous. As already discussed, convexity is immediately satisfied. The rest of the proof follows
by direct application of [45, Theorems 2.4, 2.5, 3.2 and 3.3]. In particular, we observe that CVaRβ is
a continuous and coherent risk measure, while dom ρ+ dom CVaRβ is in fact L1(P,R). Moreover,
since ρ is positively homogeneous (and using Assumption 2), we obtain that

ρβ(Z) = max
ζ∈Âβ

⟨ζ, Z⟩ ,

where
Âβ =

{
ζ ∈ A

∣∣ζ ≤ 1/β, ζ ≥ 0, E{ζ} = 1
}
,

andA is the uncertainty set of ρ. Upon noting that the set Âβ is weakly*-closed (e.g., see [1, Chapter
6]), we obtain that ρβ (as a support function) is weakly lower semicontinuous (see [46, Proposition
3.2.3]). Monotonicty and translation equivariance can be trivially shown (see [50, Section 3.3]). By
convexity we obtain that

(
ρ∗ +CVaR∗

β

)∗
= lsc (ρβ) (where lscf denotes the lower semicontinuous

hull of f , in this case with respect to the weak topology), and lsc (ρβ) = ρβ follows by weak lower

semicontinuity. To complete the proof, we observe that if ρ is coherent, then Âβ =
{
ζ ∈ A

∣∣ζ ≤ 1/β
}

and the sequence of increasing sets {Âβ}β↘0 converges in the Kuratowski-Painlevé sense (see [42,
Chapter 4.B]), with respect to both the strong and the weak topology of Lr(P,R), to cl(A) (where
the closure is taken with respect to the strong and weak topology in each case). Upon noting that
cl(A) = A (by weak*-closedness), we observe that δ

Âβ
Mosco-converges to δA as β ↘ 0 (indeed, if

a sequence of sets converges to another set in the Kuratowski-Painlevé sense with respect to both
the strong and weak sense, then it also converges in the Mosco sense, see [38]). Moreover, since
ρ = δ∗A and ρβ = δ∗

Âβ
, we obtain that ρ∗β Mosco-converges, in the functional sense (see [51]), to ρ∗

on Lr(P,R). But since r = p and p > 1, the underlying Banach space is reflexive, and thus using
the fact that ρ∗β →M ρ∗ if and only if ρβ →M ρ (the proof of which fact can be found in [48]), we
obtain that ρβ converges, in the Mosco sense, to ρ. ■

Let us now consider an instance of (RCP) for which the associated risk measures are coherent
and real-valued with domains that are strict subsets of L1(P,R), say Lp(P,R) with some p > 1.
In this case, it is reasonable to assume that f(p(·), ·) ∈ Lp(P,C). We note that Theorem 1 is
not directly applicable to this setting. Still, we could instead pose a closely related approximation,
involving the CVaR envelopes of the associated risk measures, ensuring that, on the one hand,
the approximating problem is now guaranteed to exhibit strong duality, while, on the other hand,
the approximation accuracy is controlled by the CVaR level of each corresponding CVaR envelope.
Indeed, by utilizing the equivalent reformulation of (RCP) given in (RCP-E), and by letting the
associated risk measures admit a dual representation with uncertainty sets AS ≜ A1 × . . . ×AN ,
where Ai ⊆ Lq(P,R), i ∈ N+

N , 1/p+ 1/q = 1, such an approximation (at level β ∈ (0, 1]) reads as

maximize
x,p(·)

go(x)

subject to x ≤ infζ∈AS
β
E{ζ(H) ◦ f(p(H),H)}

g(x) ≥ 0
(x,p) ∈ X ×Π

⇔

maximize
x,p(·),y(·)

go(x)

subject to x ≤ −ρ (−f(p(H),H)− y(H))

−CVaRβ(y(H))
g(x) ≥ 0
(x,p,y) ∈ X ×Π× L1(P,C)

,

where AS
β ≜ A1

β × . . . × AN
β , with Ai

β ≜ {ζ ∈ Ai
∣∣|ζ(·)| ≤ 1/β}, i ∈ N+

N . Note that we used
Theorem 7 (implicitly utilizing Assumption 2) to construct the new uncertainty sets of the associated
CVaRized risk measures, while, without loss of generality, we used the same CVaR level for each risk
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measure. Under this framework, and by utilizing Mosco convergence of our approximating sequence
of problems, we can study the consistency of this approximating sequence, obtaining conditions
under which the minimizers of the approximating problem-sequence eventually converge to some
minimizer of the original problem, as β ↘ 0. While this is left for future work, the reader is referred
to the discussions in [50, Section 4] and [42, Chapter 7.E], where similar results have been considered.

6.3 Efficient Frontiers of Mean-Risk Models

Mean-risk models, see, e.g., [1, Section 6.2] and [39, Section 2], are inevitably related to the risk-
averse functional program

inf
Z∈Z

{
ρ(Z; c) ≜ E{Z}+ cD{Z}

}
, (MR)

where Z : H → R denotes the position of a decision maker, D : L1(P,R) → R serves as a functional
measuring statistical dispersion, and where we tacitly take the feasible set of positions Z as some
decomposable subset of L1(P,R). In [1], the mean-risk approach is justified as the scalarization of
a problem where two objectives, namely the mean –E{Z}– and the dispersion –D{Z}– need to be
efficiently balanced by properly choosing an “optimal” feasible position Z. By leveraging our results,
we can provide an alternative –and perhaps more rigorous– interpretation of mean-risk models and
the associated risk-averse problem (MR) through the lens of Lagrangian duality.

Next, we assume that D is a (real-valued) convex, lower semicontinuous (thus continuous) and
positively homogeneous functional on L1(P,R), and that P is a nonatomic Borel measure. Note also
the generality of problem (MR) relative to the nature of the feasible set Z: If Z(·) ≡ Zp(·) ≜ f(p(·), ·)
for an arbitrary but integrable f when p is in some decomposable space Π, then Z can be taken as
the range of f(p(·), ·) on Π, which is necessarily decomposable. Indeed, for each pair Z ∈ Z and
Z ′ ∈ Z and any Borel set E ∈ B(H), it is plain that

Z(h)1E(h) + Z ′(h)1H\E(h) = f(p(h),h)1E(h) + f(p′(h),h)1H\E(h)

= f(po(h),h),

where po(h) = p(h)1E(h) + p′(h)1H\E(h) ∈ Π. Therefore, Z is decomposable.
It then follows that, under such general conditions, the risk-averse problem (MR) is in a well-

defined sense equivalent to the risk-constrained problem

P∗ ≜ minimize E{Z}
subject to D{Z} ≤ ε

Z ∈ Z
(MR′)

for some fixed ε ∈ R, provided that the dispersion constraint is strictly feasible, i.e., Slater’s condition
is satisfied. In this version of the decision-making task, the decision-maker tries to minimize their
expected costs or losses, while explicitly keeping the corresponding dispersion under control, i.e.,
under some number ε. By strong duality, it follows that, as long as it is finite, the value of problem
(MR′) coincides, up to a constant translation (controlled by ε), with that of the optimal Lagrangian
relaxation

inf
Z∈Z

E{Z}+ c∗D{Z},

where number c∗ ≡ c∗(ε) ≥ 0 is an optimal dual variable corresponding to (MR′) –representing the
optimal price of risk [1, Section 6.2.1]–, for some specific choice of ε. In other words, it is true that

sup
c≥0

inf
Z∈Z

ρ(Z; c)− cε = sup
c≥0

{
− cε+ inf

Z∈Z
ρ(Z; c)

}
= −c∗(ε)ε+ inf

Z∈Z
ρ(Z; c∗(ε)) = P∗,

and of course ρ(Z; c∗(ε)) = E{Z}+c∗(ε)D{Z}. Consequently, when we postulate problem (MR), i.e.,
infZ∈Z ρ(Z; c∗(ε)), we know that its set of optimal solutions contains at least one which guarantees
a dispersion of level at most ε (provided that P∗ is attained, see, e.g., [2, Theorem 4]). If this set
happens to be a singleton (possibly up to a measure-zero equivalence class), then the dispersion
constraint is satisfied without extra effort.
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Well-known risk measures, such as the CVaR, the MAD, spectral risk measures and more gen-
erally all law-invariant coherent risk measures on L1(P,R) through their Kusuoka representations
[1, Section 6.3.5], and CVaRizations of such risk measures on Lp(P,R), for p ∈ [1,∞), as discussed
earlier in Section 6.2, admit this plausible interpretation as mean-risk models by their construction.
This follows as a result of strong duality of (MR′), which is ensured by Theorem 1.

7 Applications

The base problem (RCP) is general, subsuming as special cases various useful problems arising in
several applications. In this section, we discuss a small subset of such applications in more detail
to highlight this fact. More specifically, we demonstrate how (risk-constrained versions of) certain
problems arising in wireless systems resource allocation, and nonconvex risk-constrained learning
can be cast into the form of (RCP). It follows that, as long as Assumption 1 is in effect, all such
problems exhibit strong duality, as a consequence of Theorem 1.

7.1 Risk-Constrained Resource Allocation in Wireless Communications

As discussed in Section 1.1, problem (RCP) is canonically motivated by resource allocation problems
from wireless systems engineering. In this setting, the random vector H ∈ H ⊆ RNH quantifies
the quality of links between communicating or networking entities (nodes), p represents a resource
allocation policy, and f measures instantaneous service levels achieved by a policy p operating on the
observable H. The risk of f is associated with the ergodic performance vector x ∈ RN , and utilities
g◦ and g are used to evaluate those ergodic risks. In fact, there are numerous resource allocation
tasks arising in practical settings that are readily modelled via (RCP), primarily considered in the
risk-neutral setting (see, e.g., [2, 10, 12–15, 19, 21, 32]). Below we consider two related examples to
showcase the expressive power of (RCP) in the risk-constrained setting.

7.1.1 Multiple Access Interference Channel

We first develop a generalization of the model studied in, e.g., [19, Section VI.B], [21, Section VI] and
[52], where a multiple access interference channel model is considered, in which there are NS ≡ NH

wireless transmitters simultaneously communicating with a central node, e.g., a base station. Here,
each component of the uncertain element H corresponds to the strength of the communication
channel between each transmitter and the base station. The signal emitted by each transmitter
introduces interference to all other signals emitted by the remaining transmitters, and the goal is
to optimally allocate power to each transmitter on the basis of observing the channel information
vector H, so as to maximize a certain Quality-of-Service (QoS) network-wide utility, under a total
expected power specification pmax > 0.

More specifically, consider the hollow matrix T ≜ 11⊤−I (where 1 denotes the vector of ones of
appropriate dimension), and define the service vector stacking the communication rates achievable
by all transmitters at the base station, i.e.,

fS(p(H),H) ≜ log

(
1+

H ◦ p(H)

σ2I + T [H ◦ p(H)]

)
, p ∈ Π,

where the log(·) and division operations on vectors are interpreted component-wise, σ2 > 0 denotes
the variance of the (common) reception noise induced by the transmission to the base station, and Π
is any decomposable space of nonnegative resource policies; note that p represents power. Observe
that fS(·,H) is component-wise nonconcave and nonlinearly coupled, i.e., the communication rate
of each transmitter depends on the power allocations of all transmitters in the network. We also
define the scalar resource coupling function fC(p(H),H) ≜ pmax − ⟨p(H),1⟩,p ∈ Π. By choosing
for simplicity g◦(x) = ⟨α,x⟩, i.e., a linear sumrate utility with nonnegative weights α ≥ 0 evaluating
the (risk-)ergodic service vector x ∈ RNS , the corresponding stochastic resource allocation problem
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studied in [19, 21, 52] admits a risk-constrained generalization which reads as

maximize
x,p(·)

⟨α,x⟩

subject to x ≤ −ρS

[
− log

(
1+

H ◦ p(H)

ν + T [H ◦ p(H)]

)]
⟨E{p(H)},1⟩ ≤ pmax

(x,p) ∈ RNS
+ ×Π

, (MAI)

where ρS is a finite-valued vector risk measure on L1(P,RNS ) and compatible with the construction
of (RCP); for instance, ρS could be a vector of CVaRs with potentially distinct confidence levels.

Evidently, problem (MAI) is a special case of (RCP), since the former can be rewritten as

maximize
(xS ,xC),p(·)

go(xS)

subject to

[
xS

xC

]
≤
[
−ρS(−fS(p(H),H))
−E{−fC(p(H),H))}

]
≜ −ρ(−f(p(H),H))

(xS , xC ,p) ∈ X ×Π

,

with the identifications f = (fS , fC) and X = RNS
+ × {0} ⊂ RN=NS+1. Consequently, provided

integrability of f(p(·), ·), (MAI) exhibits strong duality under mere nonatomicity of the underlying
Borel measure P associated with the channel vector H, in combination with Slater’s constraint qual-
ification; those conditions suffice to ensure that Assumption 1 holds. Let us note that despite using
a simple linear utility g◦, (MAI) remains a highly nontrivial and challenging nonconvex problem.

7.1.2 Frequency Division Broadcast Channel

We next consider the optimal risk-aware design of a frequency division broadcast channel model,
generalizing another risk-neutral problem studied in [2]. In this case, an Access Point (AP) is tasked
to optimally allocate limited resources in order to communicate with NS = NH terminals, or users;
this sometimes is called a broadcast or downlink setting, since the AP transmits information to all
terminals. As before, each of the components of H corresponds to the channel strength between
the AP and each terminal. However, in this model the AP exploits frequency division multiplexing,
which allows simultaneous transmission to multiple terminals over different frequencies (carriers, or
bands), therefore with no cross-interference. The goal of the AP is to jointly select frequencies over
which to transmit and allocate power to each set of selected transmissions (one for each frequency
selected), with both decisions made on the basis of observing the channel vectorH, so as to maximize
network-wide QoS, under a total expected power specification pmax > 0.

Power and frequency allocation policies are denoted by p ∈ Π and ϕ ∈ ΦNA
for some NA ≤ NS ,

respectively, where Π any decomposable set of nonnegative policies, and ΦNA
is defined as

ΦNA
=

{
ϕ ∈ L∞(P,RNS )

∣∣ϕ(·) ∈ {0, 1}NS , ⟨ϕ(·),1⟩ ≤ NA, P-a.e.
}
.

In other words, each element ϕ ∈ ΦNA
indicates which transmissions are active –these are at

most NA out of NS–, each of them realized over the corresponding frequency. It is easy to verify
that for any choice of the number of active transmissions NA, the set ΦNA

is decomposable. By
assuming practical Adaptive Modulation and Conding (AMC) with M ∈ N+ modes, the service
vector stacking the communication rates achievable at each terminal takes the form [2, Section on
“Frequency Division Broadcast Channel”]

fS([ϕ(H),p(H)],H) ≜
M∑

m=1

qm

[
ϕ(H) ◦ 1[lm,lm+1)

(
H ◦ p(H)

ν

)]
, (ϕ,p) ∈ ΦNA

×Π,
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where ν > 0 contains the variances of the reception noises (possibly) induced at each of the terminals,
and where qm ≥ 0 is the m-th mode rate supported at a terminal, which is achieved whenever the
corresponding received signal-to-noise ratio –i.e., the fractional term inside the indicator function in
the expression above– is between predefined levels lm ≥ 0 and lm+1 ≥ 0 (with lm < lm+1, of course),
form ∈ N+

M ; there areM possible operation modes of this form in total. Similarly to Section 7.1.1, we

also define the coupling function fC([ϕ(H),p(H)],H) ≜ pmax−⟨ϕ(H)p(H),1⟩, (ϕ,p) ∈ ΦNA
×Π.

Lastly, we consider any strictly increasing concave utility u evaluating each component of the
(risk-)ergodic service vector x ∈ RNS –we succintly write ⟨u(x),1⟩ ≜ go(x)–, the latter are further
constrained within the box compactum B ≜

{
x ∈ RNS

∣∣xmin1 ≤ x ≤ xmax1
}
, for fixed numbers 0 ≤

xmin < xmax. Then, the corresponding stochastic resource allocation problem may be formulated as

maximize
x,ϕ(·),p(·)

⟨u(x),1⟩

subject to x ≤ −ρS

[
−

M∑
m=1

πm

[
ϕ(H) ◦ 1[lm,lm+1)

(
H ◦ p(H)

ν

)]]
⟨E{ϕ(H)p(H)},1⟩ ≤ pmax

(x,ϕ,p) ∈ B × ΦNA
×Π

, (FDB)

where ρS is a finite-valued vector risk measure on L1(P,RNS ) and compatible with the construction
of (RCP), as in Section 7.1.1. We observe that (FDB) is a highly nonconvex functional mixed-
integer program; in fact, the policy ϕ is integer-valued, and the service function evaluated by the
risk measure ρS is clearly discontinuous.

Again, problem (FDB) is a special case of (RCP), because we can restate the former as

maximize
(xS ,xC),p′(·)

go(xS)

subject to

[
xS

xC

]
≤
[
−ρS(−fS(p

′(H),H))
−E{−fC(p

′(H),H))}

]
≜ −ρ(−f(p′(H),H))

(xS , xC ,p
′) ∈ X ×Π′

,

with the identifications p′ = (ϕ,p), f = (fS , fC), Π
′ = ΦNA

× Π and X = B × {0} ⊂ RN=NS+1,
and where we can easily verify that the product Π′ is a decomposable set. If f(p′(·), ·) is integrable
on Π′ and P is nonatomic, it follows that problem (FDB) exhibits strong duality as long as it is
strictly feasible. This is true despite the discontinuity of f(·,H) and the nonconvexity of the set of
feasible frequency policies policies ΦNA

.

7.2 Risk-Constrained Learning with Nonconvex Losses

Next, we consider a general formulation in the context of supervised risk-constrained learning, where
the associated loss functions are allowed to be nonconvex. In the risk-neutral setting, this class of
problems has been recently studied in [23]. On our usual probability space (Ω,F , µ), we consider
random example vectors (Xi, Yi) : Ω → Rd×R, i ∈ Nm together with their induced Borel probability
distributions Di : B(Rd × R) → [0, 1], instantiated over data pairs (x, y), where x ∈ Rd represents
a realized feature or system input and y ∈ R represents a realized label or measurement. We denote
by DXi

the marginal distribution of feature Xi, and by DYi|Xi
the conditional distribution of label

Yi given feature Xi, for i ∈ Nm.
We assume that the marginal probability distributions DXi

, for i ∈ N+
m, are absolutely contin-

uous with respect to a “common denominator” DX0
(without loss of generality), which in turn is

assumed to be nonatomic. Consequently, the Radon-Nikodym theorem implies existence of integrable
functions wi : Rd → R+, such that wi ≜ dDXi

/dDX0
, for all i ∈ N+

m.
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Letting ℓi : Rk × R → R+ be given (possibly nonconvex) loss functions, for i ∈ Nm, we consider
the risk-over-risk functional constrained learning problem

minimize
f(·)∈F

ρ0
(
ρ̂0
(
ℓ0
(
f(X0), Y0

)∣∣X0

))
subject to ρi

(
ρ̂i
(
ℓi
(
f(Xi), Yi

)∣∣Xi

))
≤ ci, i ∈ N+

m

, (RCL)

where, for i ∈ Nm, ρi is a convex, lower semicontinuous, and positively homogeneous risk measure
taking finite values on L1(DXi ,R), while ρ̂i(·|Xi) is a L1(DXi ,R)-valued conditional risk measure
over the conditional measure of Yi given Xi, which is merely assumed to obey a substitution rule of
the form

ρ̂i(ℓi(f(Xi), Yi)|Xi) ≡ ρ̂i(ℓi(z, Yi)|Xi)
∣∣
z=f(Xi)

≡ Fi (f(Xi),Xi) ,

where Fi(f(·), ·) ∈ L1(DXi
,R) for any learning representation (i.e., policy) f : Rd → R, the latter

lying in an appropriate decomposable space F . Lastly, ci ∈ R, for all i ∈ N+
m.

Since DXi
is absolutely continuous relative to DX0

and Fi(f(·), ·) ∈ L1(DXi
,R) by assumption,

it also follows that Gi(f(·), ·) ≜ Fi(f(·), ·)wi ∈ L1(DX0
,R), for all i ∈ N+

m. Let Ai ⊆ L∞(DXi
,R)

be the uncertainty set corresponding to ρi, i ∈ Nm. Then, for each i ∈ N+
m we may construct another

(related) convex, lower semicontinuous, and positively homogeneous risk measure ρ̃i on L1(DX0
,R),

which is such that ρ̃i(Zwi) = ρi(Z), for any Z ∈ L1(DXi
,R). In particular, for i ∈ N+

m we define

ρ̃i (Z(X0)wi(X0)) ≜ sup
ζ∈Ai

∫
ζ(x)Z(x)wi(x)dDX0(x)

= sup
ζ∈Ai

∫
ζ(x)Z(x)dDXi

(x) = ρi (Z(Xi)) , Z ∈ L1(DXi
,R),

where we have exploited the dual representation of ρi (also note that ζZwi ∈ L1(DX0
,R)). Further,

it can be shown that the supremum in the second integral above would not change by restricting
Ai to an appropriately selected bounded set Ãi ⊆ L∞(DX0

,R), chosen independently of Zwi and

with Ai ⊇ Ãi, by carefully noticing that the integral is taken with respect to DXi
, and does not

change for functions differing on DXi
-null sets. In other words, ρ̃i admits the desired representation

ρ̃i (Z(X0)wi(X0)) = sup
ζ∈Ãi

∫
ζ(x)[Z(x)wi(x)]dDX0

(x), Z ∈ L1(DXi
,R),

for some bounded risk envelope Ãi ⊆ L∞(DX0
,R), also verifying that ρ̃i is a convex, lower semi-

continuous and positively homogeneous risk measure on the subset of L1(DX0
,R) generated by

functions of the form Zwi, for Z ∈ L1(DXi
,R), i ∈ N+

m. Although not necessary, we can also extend
ρ̃i everywhere on L1(DX0

,R), for each i ∈ N+
m. Therefore, it follows that, for every f ∈ F ,

ρi
(
ρ̂i
(
ℓi
(
f(Xi), Yi

)∣∣Xi

))
= ρi

(
Fi

(
f(Xi),Xi

))
= ρ̃i

(
Gi

(
f(X0),X0

))
,

and we can then equivalently recast (RCL) as (under our assumptions)

minimize
f(·)∈F

ρ0
(
F0

(
f(X0),X0

))
subject to ρ̃i

(
Gi

(
f(X0),X0

))
≤ ci, i ∈ N+

m

. (RCL′)

Note that (RCL′) is now an instance of (RCP) –Section 6.1–, and hence Slater’s condition suffices
to ensure that (RCL′) satisfies Assumption 1. Theorem 1 then implies that (RCL′) exhibits strong
duality, and the same of course holds for (RCL).

At this point, we have described problem (RCL) in full generality. For the convenience of the
reader we now discuss specific instances of (RCL) which can be equivalently expressed in the form
of (RCL′), to demonstrate the compatibility and generality of our assumptions. Firstly, let us notice
that our assumption of absolute continuity of the marginal distributions DXi with respect to DX0 or
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more generally some other common denominator measure is quite standard in the literature. Indeed,
it holds if each distribution DXi

, i ∈ Nm is assumed to admit a density relative to the Lebesgue
measure (see, e.g., [23]), which is of course nonatomic, considered on a compact subset of Rd. The
latter minor technicality just imposes boundedness on the features, and is essential for keeping
the Lebesgue measure finite, thus rendering it equivalent to a probability measure. Additionally,
assuming nonatomicity of DX0

itself or any of the rest of the DXi
, i ∈ N+

m is standard (see, e.g.,
[23, Theorem 1]) and intuitive, since the features are for a fact continuously valued in numerous
machine learning applications.

Our second assumption concerns the substitution rule for the conditional risk mappings ρ̂i(·|Xi).
This is not restrictive and can be shown to hold for all convex, lower semicontinuous, and positively
homogeneous risk measures of interest herein. In fact, the substitution rule is quite general and
holds beyond the aforementioned class. For instance, several compositional risk measures studied in
[53] satisfy the substitution rule, being in particular nonhomogeneous.

Finally, let us specialize our result to the case where ρi(·) = EDXi
{·} and ρ̂i(·|Xi) = EDYi|Xi

{·},
for all i ∈ Nm. This setting corresponds to risk-neutral constrained learning considered in [23].
Assuming that DX0

is nonatomic and DX0
≫ DXi

for all i ∈ N+
m (or any alternative situation; see

above), together with Slater’s constraint qualification and that E {ℓi (f(Xi), Yi) |Xi} ∈ L1(DXi
,R)

for every f ∈ F , where F is a decomposable space, we recover the results of [23, Proposition
III.2 and Proposition B.1], unifying the classification and regression regimes, while dispensing cer-
tain assumptions. In particular, the zero duality gap result on regression problems given in [23,
Proposition B.1] is shown here to hold without the requirement postulated in [23, Assumption 6].

8 Conclusions

We established strong duality for a wide class of risk-constrained nonconvex functional programs.
Our technical approach has exploited Uhl’s extension of Lyapunov’s convexity theorem for Banach-
valued vector-measures together with risk duality, and is applicable to programs involving convex,
lower semicontinuous and positively homogeneous risk measures on L1, strictly generalizing existing
results available for the risk-neutral setting, without imposing additional assumptions. We further
discussed extensions of our results covering a wider class of problems, implications on the interpre-
tation of mean-risk models, as well as certain limitations of our results, possibly identifying topics
for further investigation. Lastly, we showcased the applicability of the theory on two specific appli-
cation areas with practical interest, namely, risk-constrained wireless systems resource allocation,
and risk-constrained learning with nonconvex losses. In the latter case, we have recovered known
strong duality results for risk-neutral constrained learning under relaxed assumptions, while also
emphasizing the expressive power of the risk-constrained model studied herein.

Acknowledgments. The authors would like to kindly acknowledge support by a Microsoft gift,
as well as by the US National Science Foundation (NSF) under Grant CCF 2242215.

Appendix A Bochner Integral Representation of Gp

To verify the seemingly obvious though not immediate equivalence

Gp(E) =

∫
E

ΛB(h)⊗ f(p(h),h)dP(h), E ∈ B(H),

we first need to show that the function ΛB(·)⊗f(p(·), ·) ∈ X = ℓ∞ is strongly Bochner-measurable.
By definition [29, Definition II.1.1], we need to verify the existence of a sequence of simple X-valued
functions {gm : H → X}m∈N such that

lim
m→∞

∥gm(h)−ΛB(h)⊗ f(p(h),h)∥X = 0, P-a.e.
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First, observe that, for every h ∈ H, each of the elements of ΛB may be written as

λn(h) ≜
∑

i∈In⊂N
ϱ̃in1Di

(h) ≜
∞∑
i=0

ϱin1Di
(h), for some finite index set In, n ∈ N,

with ϱ̃in ∈ Q
⋂
[−γ, γ] and where we have further defined

ϱin ≜ ϱ̃in1In
(i) =

{
ϱ̃in if i ∈ In
0, if not

, (i, n) ∈ N× N.

Consequently, it is true that

ΛB(h) =


λ0(h)
λ1(h)

...
λn(h)

...

 =



∑∞
i=0 ϱ

i
01Di

(h)∑∞
i=0 ϱ

i
11Di

(h)
...∑∞

i=0 ϱ
i
n1Di(h)
...

 =

∞∑
i=0


ϱi0
ϱi1
...
ϱin
...

1Di(h) ∈ X, h ∈ H,

confirming that ΛB is countably valued; by defining ϱi ≜ [ϱ̃i0 ϱ̃
i
1 . . .] ∈ X, ΛB can be represented as

ΛB(h) =

∞∑
i=0

ϱi1Di(h), h ∈ H.

Now, clip-off ΛB and define the approximating family of simple X-valued functions on H with
members

Λm
B (h) =

m∑
i=0

ϱi1Di
(h), h ∈ H,

for each m ∈ N, and consider another standard sequence of finite-dimensional simple functions
{[f(p(·), ·)]m}m∈N converging pointwise to f(p(·), ·). Since the product of simple functions is also a
simple function, let us choose, for every m ∈ N,

gm(h) ≜ Λm
B (h)⊗ [f(p(h),h)]m, h ∈ H.

Apparently, we would like to show that the sequence {gm(h)}m∈N converges in norm to ΛB(h) ⊗
f(p(h),h) for P-almost every h. To do this, we may decompose as (triangle inequality)

∥gm(h)−ΛB(h)⊗ f(p(h),h)∥X
≤ ∥ΛB(h)⊗ ([f(p(h),h)]m − f(p(h),h))∥X + ∥(Λm

B (h)−ΛB(h))⊗ [f(p(h),h)]m∥X.

For the first term on the right-hand side, we easily have that, for every h ∈ H,

∥ΛB(h)⊗ ([f(p(h),h)]m − f(p(h),h))∥X = ∥ΛB(h)∥X∥[f(p(h),h)]m − f(p(h),h)∥∞

and so

lim
m→∞

∥ΛB(h)⊗ ([f(p(h),h)]m − f(p(h),h))∥X = 0, P-a.e.

For the second term, it is similarly true that, for every h ∈ H,

∥(Λm
B (h)−ΛB(h))⊗ [f(p(h),h)]m∥X = ∥Λm

B (h)−ΛB(h)∥X∥[f(p(h),h)]m∥∞,
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and thus it suffices to look at the approximation ∥Λm
B (h)−ΛB(h)∥X. We have

∥Λm
B (h)−ΛB(h)∥X =

∥∥∥∥ m∑
i=0

ϱi1Di(h)−
∞∑
i=0

ϱi1Di(h)

∥∥∥∥
X

=

∥∥∥∥ ∞∑
i=m+1

ϱi1Di(h)

∥∥∥∥
X

=

∞∑
i=m+1

∥ϱi∥X1Di
(h) → 0, as m → ∞.

Overall, we have that

lim
m→∞

∥gm(h)−ΛB(h)⊗ f(p(h),h)∥X = 0, P-a.e.

Because gm is simple for each m ∈ N, this shows that ΛB(·)⊗ f(p(·), ·) is (strongly) P-measurable.
In particular, it is now plain to see that ΛB(·)⊗f(p(·), ·) is Bochner integrable –and specifically

in L1(P,X)–; simply observe that, for every h ∈ H,

∥ΛB(h)⊗ f(p(h),h)∥X = sup
n∈N

∥λn(h)f(p(h),h)∥∞

≤ γ∥f(p(h),h)∥∞.

Since
∫
∥f(p(·), ·)∥∞dP < ∞, the claim follows by [29, Theorem II.2.2]. Proceeding in a general

fashion, by construction of the Bochner integral there is a sequence of simple X-valued functions
{gm : H → X}m∈N such that [29, Definition II.2.1]

lim
m→∞

∫
∥gm(h)−ΛB(h)⊗ f(p(h),h)∥XdP(h) = 0.

Then, it is true that, for every (no, io) ∈ N× N+
N ,∫

∥gm(h)−ΛB(h)⊗ f(p(h),h)∥XdP(h) =
∫

sup
n∈N

max
i∈N+

N

|gmn,i(h)− λn(h)fi(p(h),h)|dP(h)

≥
∫

|gmno,io(h)− λno(h)fio(p(h),h)|dP(h) ≥ 0,

which reveals that each component sequence {gmno,io}m∈N is such that

lim
m→∞

∫
|gmno,io(h)− λno(h)fio(p(h),h)|dP(h) = 0.

This of course further implies that, for every (n, i) ∈ N× N+
N ,

lim
m→∞

∫
E

gmn,i(h)dP(h) =

∫
E

λn(h)fi(p(h),h)dP(h), E ∈ B(H).

Using properties of X as a vector space (i.e., addition and scalar multiplication), it follows that for
every simple function g : H → X, we may write, for some fixed vectors {zk ∈ X}k∈N+

K
and events

{Gk ∈ B(H)}k∈N+
K

(and with the obvious definition of the Bochner integral for simple functions),

∫
E

g(h)dP(h) =

∫
E

K∑
k=1

zk1Gk
(h)dP(h)
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≡
K∑

k=1

zkP(E
⋂

Gk) =



∑K
k=1 z

k
0,1P(E

⋂
Gk)

...∑K
k=1 z

k
0,NP(E

⋂
Gk)∑K

k=1 z
k
1,1P(E

⋂
Gk)

...


=



∫
E
g0,1(h)dP(h)

...∫
E
g0,N (h)dP(h)∫

E
g1,1(h)dP(h)

...

 .

In other words, the desired property that we would like to show for the Bochner integral holds for
all simple functions. Using this basic fact, again by definition [29, Definition II.2.1], it holds that,
for each E ∈ B(H),

∫
E

ΛB(h)⊗ f(p(h),h)dP(h) = lim
m→∞

∫
E

gm(h)dP(h) = lim
m→∞



∫
E
gm0,1(h)dP(h)∫

E
gm0,2(h)dP(h)

...∫
E
gm0,N (h)dP(h)∫

E
gm1,1(h)dP(h)

...


,

where the limit is with respect to the natural norm of X. Therefore, for every (n, i) ∈ N× N+
N , we

have that

0 = lim
m→∞

∥∥∥∥∫
E

gm(h)dP(h)−
∫
E

ΛB(h)⊗ f(p(h),h)dP(h)

∥∥∥∥
X

≥ lim
m→∞

∣∣∣∣ ∫
E

gmn,i(h)dP(h)−
[ ∫

E

ΛB(h)⊗ f(p(h),h)dP(h)

]
n,i

∣∣∣∣
=

∣∣∣∣ ∫
E

λn(h)fi(p(h),h)dP(h)−
[ ∫

E

ΛB(h)⊗ f(p(h),h)dP(h)

]
n,i

∣∣∣∣ ≥ 0.

Enough said. ■

Appendix B Detail: Limit Exchange Argument
in Section 5.2

For brevity, let

Zα(i) ≜ fi(p(H),H), i ∈ N+
N ,

Z ′
α(i) ≜ fi(p

′(H),H), i ∈ N+
N and

Zα(n, i) ≜ fi(p
n
α(H),H), (n, i) ∈ N× N+

N .

We have shown that

∀ε > 0, ∃N(ε), such that ∀n > N(ε) and ∀(m, i) ∈ N× N+
N ,

|E{λmZα(n, i)} − αE{λmZα(i)} − (1− α)E{λmZ ′
α(i)}| ≤ ε.

In other words, convergence is uniform in m, which also implies that convergence is uniform over all
possible subfamilies of elements in the countable base B. Equivalently, we can write the statement

∀ε > 0, ∃N(ε), such that ∀n > N(ε),

sup
i

[
sup
F⊆B

sup
λ∈F

]
|E{λZα(n, i)} − αE{λZα(i)} − (1− α)E{λZ ′

α(i)}| ≤ ε,
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where it holds that
sup
F⊆B

sup
λ∈F

• = sup
λ∈B

• .

For every choice of ζ ∈ Ai
γ , i ∈ N+

N , as we discuss in Section 5.2, there is a subsequence {λm}m∈K′
ζ
,

K′
ζ ⊆ N (corresponding to a subfamily of elements in B) such that

λm −→
K′

ζ∋m→∞
ζ, P-a.e.

Then, by dominated convergence –note that Zα(n, i), Zα(i) and Z ′
α(i) are all integrable and all λm’s

are essentially bounded by γ–, we have that

E{λmZα(n, i)} −→
K′

ζ∋m→∞
E{ζZα(n, i)},

E{λmZα(i)} −→
K′

ζ∋m→∞
E{ζZα(i)} and

E{λmZ ′
α(i)} −→

K′
ζ∋m→∞

E{ζZ ′
α(i)}.

In other words, for every η > 0, there is a common index M(n, i, η, ζ) ∈ K′
ζ , such that, for every

m > M(n, i, η, ζ) and in K′
ζ ,

|E{λmZα(n, i)} − E{ζZα(n, i)}| ≤ η,

|E{λmZα(i)} − E{ζZα(i)}| ≤ η and

|E{λmZ ′
α(i)} − E{ζZ ′

α(i)}| ≤ η.

Therefore,

∀ε > 0, ∃N(ε), such that ∀n > N(ε),∀i ∈ N+
N ,∀ζ ∈ Ai

γ ,∀η > 0, and ∀m > M(n, i, η, ζ) and in K′
ζ ,

|E{λmZα(n, i)} − αE{λmZα(i)} − (1− α)E{λmZ ′
α(i)}| ≤ ε.

But under those circumstances, we have

ε ≥ |E{λmZα(n, i)} − αE{λmZα(i)} − (1− α)E{λmZ ′
α(i)}|

= |E{λmZα(n, i)} − E{ζZα(n, i)}+ E{ζZα(n, i)}
− αE{λmZα(i)}+ αE{ζZα(i)} − αE{ζZα(i)}

− (1− α)E{λmZ ′
α(i)}+ (1− α)E{ζZ ′

α(i)} − (1− α)E{ζZ ′
α(i)}|

≥
∣∣∣|E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′

α(i)}|

− |E{λmZα(n, i)} − E{ζZα(n, i)}

+ α(E{ζZα(i)} − E{λmZα(i)}) + (1− α)(E{ζZα(i)} − E{λmZα(i)})|
∣∣∣

≥ |E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′
α(i)}|

− |E{λmZα(n, i)} − E{ζZα(n, i)}
+ α(E{ζZα(i)} − E{λmZα(i)}) + (1− α)(E{ζZα(i)} − E{λmZα(i)})|,

which implies that

|E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′
α(i)}| ≤ ε+ η + αη + (1− α)η = ε+ 2η,

and therefore, we have shown that

∀ε > 0, ∃N(ε), such that ∀n > N(ε),∀i ∈ N+
N ,∀ζ ∈ Ai

γ and ∀η > 0,
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|E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′
α(i)}| ≤ ε+ 2η.

In other words, we can write

∀ε > 0, ∃N(ε), such that ∀n > N(ε) and ∀η > 0,

sup
i∈N+

N

sup
ζ∈Ai

γ

|E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′
α(i)}| ≤ ε+ 2η.

Since η is arbitrary, it is actually true that

∀ε > 0, ∃N(ε), such that ∀n > N(ε),

sup
i∈N+

N

sup
ζ∈Ai

γ

|E{ζZα(n, i)} − αE{ζZα(i)} − (1− α)E{ζZ ′
α(i)}| ≤ ε,

and because

sup
ζ∈Ai

γ

|E{ζZα(n, i)} − [αE{ζZα(i)}+ (1− α)E{ζZ ′
α(i)}]| ≥∣∣∣∣ inf

ζ∈Ai
γ

E{ζZα(n, i)} − inf
ζ∈Ai

γ

αE{ζZα(i)}+ (1− α)E{ζZ ′
α(i)}

∣∣∣∣
we end up with the statement

∀ε > 0, ∃N(ε), such that ∀n > N(ε),

sup
i∈N+

N

∣∣∣∣ inf
ζ∈Ai

γ

E{ζZα(n, i)} − inf
ζ∈Ai

γ

E{ζ[αZα(i) + (1− α)Z ′
α(i)}

∣∣∣∣ ≤ ε.

Enough said. ■

Appendix C Strong Duality via Convexity of cl(C):
Alternative Proof

It is possible to establish strong duality of problem (RCP) by exploiting a characterization of strong
duality in general infinite dimensional cone-constrained nonconvex programming by Flores-Bazán
and Mastroeni [30, Theorem 3.2]. While the overall argument is indeed elegant, we believe that it
is not as transparent and significantly less elementary in comparison with our discussion in Section
5.3. Nevertheless, we find the development valuable.

In what follows, S is a Hausdorff topological vector space, Y is a real Hausdorff locally convex
topological vector space with topological dual Y∗ and bilinear pairing ⟨·, ·⟩Y(∗) , P ⊆ Y is a nonempty
closed convex cone with possibly empty (topological) interior, and C is a nonempty subset of S. Under
this setting and given operators F : C→ R and G : C→ Y, let us consider the infinite-dimensional
cone-constrained program

−∞ < F∗ ≜ minimize
τ

F (τ )

subject to G(τ ) ∈ −P
τ ∈ C

, (CCP)

whose feasible set is hereafter assumed to be nonempty; thus F∗ ∈ R. In direct analogy to the
finite-dimensional setting, the Lagrangian dual associated to (CCP) is

sup
λ∈P∗

inf
τ∈C

F (τ ) + ⟨λ,G(τ )⟩Y(∗) ,

32



where P∗ is the positive polar cone of P. We also define the image space set [28]

E∗ ≜

[
F (C)
G(C)

]
−
[
F∗

0

]
+

[
R+

P

]
,

where set addition is in the Minkowski sense. Under this general setting, the following powerful
result holds, providing necessary and sufficient conditions for strong duality in infinite dimensions.

Theorem 8 ([30] Characterization of Strong Duality). Strong duality holds for (CCP) if and
only if

cl[cone(conv(E∗))]
⋂[

−R++

{0}

]
= ∅.

It readily follows that the risk-constrained problem (RCP) is an instance of (CCP) and can be
expressed as

−P∗ = minimize
x,p(·)

−go(x)

subject to

[
ρ(−f(p(H),H)) + x

−g(x)

]
∈ −RN+Ng

+

(x,p) ∈ X ×Π

, (RCP)

with the identifications S = RN × L1(P,R) –assuming for simplicity that Π ⊆ L1(P,R)–, Y =

RN+Ng , P = RN+Ng

+ , C = X × Π, and of course F∗ = −P∗. In this case, the set E∗ takes the
particular form

E∗ =

(δo, δr, δd)

∣∣∣∣∣∣
δo= −go(x)− (−P∗) + zo
δr= ρ(−f(p(H),H)) + x+ zr

δd= −g(x) + zd

, for some
(x,p) ∈ X ×Π

(zo, zr, zd) ∈ R1+N+Ng

+


=

(δo, δr, δd)

∣∣∣∣∣∣
−go(x) + P∗ ≤ δo
ρ(−f(p(H),H)) + x ≤ δr
−g(x) ≤ δd

, for some (x,p) ∈ X ×Π

 ,

or, equivalently,

E∗ = −
[
C −

[
P∗

0

] ]
≜ −C∗.

It follows that E∗ and our utility-constraint set C are essentially equivalent. From Theorem 8 we can
readily see that strong duality of (RCP) will follow if we can show that

cl[cone(conv(C∗))]
⋂[

R++

{0}

]
= ∅.

Next we show that this is indeed the case as a consequence of the convexity of cl(C), and provided that
Slater’s constraint qualification holds. First, note that convexity of cl(C) is equivalent to convexity
of cl(C∗) (the latter set is just a translation of the former set), and since

conv(C∗) ⊆ conv(cl(C∗)) = cl(C∗) ⊆ cone(cl(C∗))
=⇒ cone(conv(C∗)) ⊆ cone(cl(C∗)),

it will suffice to show that

cl[cone(cl(C∗))]
⋂[

R++

{0}

]
= ∅,

because cl[cone(cl(C∗))] ⊇ cl[cone(conv(C∗))]. In other words, if suffices to show that

∀ε > 0, (ε,0,0) /∈ cl[cone(cl(C∗))].
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Under Slater’s condition, there exist a number ηS > 0 and vectors δSr > 0 and δSd > 0 such that

(−ηS , δSr , δ
S
d ) ∈ C∗ ⊆ cl(C∗) ⊆ cl[cone(cl(C∗))].

Now, suppose that there is an ε > 0 such that (ε,0,0) ∈ cl[cone(cl(C∗))]. Because of convexity of
the latter set, it holds that, for every α ∈ [0, 1],

zα = (αε− (1− α)ηS , (1− α)δSr , (1− α)δSd ) ∈ cl[cone(cl(C∗))],

and we can choose α such that

1 > α >
ηS

ε+ ηS
⇐⇒ αε− (1− α)ηS > 0 =⇒ zα > 0.

Since zα is in the closure of cone(cl(C∗)) = {x|x = βy,y ∈ cl(C∗), β ≥ 0} (note that cl(C∗) is
convex), there exists a sequence of points {zn

α}n∈N entirely contained in cone(cl(C∗)) which converges
to zα; that is, each member of such a sequence must be of the form

zn
α = βnyn, for some yn ∈ cl(C∗) and βn ≥ 0, n ∈ N.

But because zα is strictly positive, such a sequence must also be eventually strictly positive, which
implies the existence of an index no such that

0 < zno
α ⇐⇒ zno

α = βnoyno , for some 0 < yno ∈ cl(C∗) and βno > 0.

This is impossible, because cl(C∗) cannot contain strictly positive points; if this could happen, then
there would exist another sequence entirely contained in C∗ and converging to that strictly positive
point, implying the existence of at least one strictly positive point in C∗, which is absurd –this is
essentially the same limiting argument as that used right above. Consequently, the condition of
Theorem 8 is verified, confirming that problem (RCP) exhibits strong duality. ■

As a final remark, the reader might notice the similarity of our arguments above with those in
the proof of Lemma 5; of course, this is not at all coincidental.
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