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Linear Quadratic Control with Risk Constraints
Anastasios Tsiamis1, Dionysios S. Kalogerias2, Alejandro Ribeiro1, and George J. Pappas1

Abstract— We propose a new risk-constrained formula-
tion of the classical Linear Quadratic (LQ) stochastic con-
trol problem for general partially-observed systems. Our
framework is motivated by the fact that the risk-neutral
LQ controllers, although optimal in expectation, might be
ineffective under relatively infrequent, yet statistically sig-
nificant extreme events. To effectively trade between aver-
age and extreme event performance, we introduce a new
risk constraint, which explicitly restricts the total expected
predictive variance of the state penalty by a user-prescribed
level. We show that, under certain conditions on the pro-
cess noise, the optimal risk-aware controller can be evalu-
ated explicitly and in closed form. In fact, it is affine relative
to the minimum mean square error (mmse) state estimate.
The affine term pushes the state away from directions
where the noise exhibits heavy tails, by exploiting the third-
order moment (skewness) of the noise. The linear term
regulates the state more strictly in riskier directions, where
both the prediction error (conditional) covariance and the
state penalty are simultaneously large; this is achieved
by inflating the state penalty within a new filtered Riccati
difference equation. We also prove that the new risk-aware
controller is internally stable, regardless of parameter tun-
ing, in the special cases of i) fully-observed systems, and
ii) partially-observed systems with Gaussian noise. The
properties of the proposed risk-aware LQ framework are
lastly illustrated via indicative numerical examples.

I. INTRODUCTION

In the problem of Linear Quadratic (LQ) stochastic control,
one is typically interested in optimizing average control
performance for linear systems of the form

xt+1 = Axt +But + wt+1

yt = Cxt + vt,
(1)

where xt ∈ Rn is the state, yt ∈ Rm is the measured
output, ut is input, and wt, vt are process and measurement
noise disturbances. A standard approach is to minimize the
expectation of the following quadratic cost comprising of stage-
wise input and state penalties up to a horizon N

min
u

E

{
x′NQxN +

N−1∑
t=0

x′tQxt + u′tRut

}
s.t. Dynamics (1)

, (2)

where matrices Q, R are design choices.
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Fig. 1. Comparison between risk-neutral and risk-aware control
performance, when the system experiences rare but large shocks—here
the shock occurs at time 6. By sacrificing average behavior, the risk-
aware controllers push the state away from the direction of the shock.

While LQ control has been a standard approach to controlling
stochastic systems, it only focuses on average performance,
which might be an insufficient objective when dealing with
critical applications. Examples of such applications appear
naturally in many areas, including wireless industrial control
[1], energy [2], [3], finance [4]–[6], robotics [7], [8], networking
[9], and safety [10], [11], to name a few. Indeed, occurrence
of less probable, non-typical or unexpected events might lead
the underlying dynamical system to experience shocks with
possibly catastrophic consequences, e.g., a drone diverging
too much from a given trajectory in a hostile environment,
or an autonomous vehicle crashing onto a wall or hitting a
pedestrian. In such situations, design of effective risk-aware
control policies is highly desirable, systematically compensating
for those extreme events, at the cost of slightly sacrificing
average performance under nominal conditions.

To highlight the usefulness of a risk-aware control policy,
let us consider the following simple, motivating example. Let
xk+1 = xk + uk +wk+1 model an aerial robot, moving along
a line. Assume that the process noise wk is i.i.d. Bernoulli,
taking the values β > 2 with probability 1/β and 0 with
probability 1− 1/β. This noise represents shocks, e.g., wind
gusts, that can occur with some small probability. We would
then like to minimize the LQR cost E

∑N
t=0{x2t}, i.e., the total

displacement of the robot over a horizon of N time steps. In
this case, the LQR optimal controller is uLQR

k = −xk − 1,
where −1 ≡ −Ewk cancels the mean of the process noise. We
see that the LQR solution is risk-neutral, as it does not account
for the fact that the shock β could be arbitrarily large. On the
other hand, the risk-aware LQR formulation proposed in this
work results in a family of optimal controllers of the form

u∗t (µ) = −xt − 1− µ

1 + 2µ
(β − 2), µ ≥ 0,

where µ controls the trade-off between average performance
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and risk. As µ increases, we move from the risk-neutral to the
maximally risk-aware controller u∗t (∞) = −xt − β/2, which
treats the noise as adversarial—see Fig. 1.

In both classical and recent literature in linear-quadratic
problems, risk awareness in estimation and control is typically
achieved by replacing the respective random cost with its
exponentiation [12]–[21]. Yet, the resulting stochastic control
problem might not be well-defined for general classes of noise
distributions, as it requires the moment generating function of
the cost to be finite. Thus, heavy-tailed or skewed distributions,
which are precisely those exhibiting high risk, are naturally
excluded. Also, even if the expectation of the exponential
cost is finite, it does not lead to a general, closed-form and
interpretable solution. A notable exception is that of Gaussian
noise, also known as the Linear Exponential Quadratic Gaussian
(LEQG) problem, which does enjoy a simple closed-form
solution [13], [22]. Apparently though, the Gaussian assumption
is unable to capture distributions with asymmetric (skewed)
structure, as in the above example.

Our contributions are as follows:
–New Risk-Constrained Formulation. We introduce a new
risk-constrained formulation for the problem of LQ control
in the case of partially-observed systems. The standard LQ
objective is minimized subject to a total expected predictive
variance risk constraint with respect to the state penalties.
By tuning the risk constraint, we can trade between average
performance and statistical variability of the state penalties.
–General Noise Models. Contrary to the LEQG approach, our
risk-constrained formulation is well-defined for general noise
distributions, provided the associated fourth-order moments
of the process noise are finite; thus, heavy-tailed or skewed
noises are supported within our framework. For fully-observed
systems, the optimal control law can be explicitly characterized
under the same condition of finite fourth-order moments. In
the case of general partially-observed systems, in order to
characterize the optimal controller, we require the additional
sufficient condition that all higher-order moments of the process
noise exist. In any case, we do not require the existence of a
moment generating function.
–Characterization of Optimal Risk-Aware Controls. Under
the aforementioned regularity conditions on the process noise,
the constrained LQ problem admits a closed-form solution
with a natural interpretation. The optimal risk-aware feedback
controller is affine with respect to the optimal observer.
The affine component pushes the state away from directions
where the state prediction error exhibits (skewed) heavy tails.
Meanwhile, the state feedback gain satisfies a new risk-aware
filtered Riccati recursion, in which the state penalty is inflated in
riskier directions, where both the (conditional) covariance of the
state prediction error and the state penalty are simultaneously
larger. Interestingly, the separation principle holds, in the sense
that the optimal observer is the minimum mean-square error
estimator, which is designed independently of the control
objective. To explicitly compute the parameters of the affine
optimal control law, it is required to track several conditional
moments, which might be a hard problem in general.
–Explicit Risk-Aware LQR and LQG controllers. In the
special case of fully-observed systems (Linear Quadratic

Regulator (LQR)) we can explicitly compute the optimal control
law. The same is true for the case of partially-observed systems
with Gaussian noise (Linear Quadratic Gaussian (LQG) control).
Further, we show that our optimal risk-aware controllers
are always stable, under standard controllability/observability
conditions. Interestingly, by appropriate re-parameterization,
our risk-aware LQR problem is equivalent to a generalized risk-
neutral LQR problem with a tracking objective. Essentially, this
implies that risk-neutral LQR formulations can provide inherent
risk-averse behavior, as long as the involved parameters are
selected in a principled way, as presented herein. A similar
property holds for the risk-aware LQG problem.

A. Related Work

Risk-aware optimization. Risk-aware optimization has been
studied in a wide variety of decision making contexts [11], [23]–
[33]. The basic idea is to replace expectations by more general
functionals, called risk measures [34], purposed to effectively
quantify the statistical volatility of the involved random cost
function, in addition to mean performance. Typical examples
are mean-variance functionals [4], [34], mean-semideviations
[27], and Conditional Value-at-Risk (CVaR) [35].

CVaR-optimal control. In the case of control systems,
CVaR optimization techniques have also been considered
for risk-aware constraint satisfaction [11]. Although CVaR
captures variability and tail events well, CVaR optimization
problems rarely enjoy closed-form expressions. Approximations
are usually required to make computations tractable, e.g.,
process noise and controls are assumed to be finite-valued [11].
Recently, in [36] a tractable upper bound was derived for the
CVaR-LQR problem based on the assumption that the noise is
finite-valued.

Robust control. Another related concept is that of robust
control, where the system model or the noise profile is
unknown [37]–[39]. The objective is to optimally control the
true system under worst case model uncertainty. On the contrary,
in risk-aware control, extreme noise events are part of the
system model; they are not the outcome of model mismatch.
Even if the system is exactly modeled, we would still need to
consider risk-aware control if the process noise is heavy-tailed
or highly variable. From this point of view, robustness and risk
are complementary concepts.

Mixed H2/H∞ control. Regret-optimal control Interest-
ingly, there is a connection between mixed H2/H∞ control
and risk-aware LEQG control [40], [41]. By increasing the
exponential parameter in the LEQG control law, we trade
average performance (H2) for closed-loop responses with
smaller H∞ norm. Another way to trade between robustness
and performance was introduced in [42], where the worst-case
regret with respect to non-causal H2 policies is minimized.

Predictive variance. Recently, in our previous work [43],
we introduced predictive variance as a new risk measure
for LQR control and used it in a risk-constrained optimal
control formulation. The results of [43] were extended to
the infinite horizon case in [44]. The performance of the
policy gradient algorithm in the case of risk-constrained Linear
Quadratic Regulators was also studied in [45]. Predictive
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variance constraints have also been used as a measure of risk in
portfolio optimization [46]; different from our paper, the noise
is limited to Gaussian distributions and the variance is with
respect to linear stage costs. Note that our previous work [43]
contains only preliminary results for fully-observed systems.
Here, we study the more general and challenging problem
of LQ control in the case of partially observed systems. In
fact, the optimal feedback law in the case of partially-observed
systems can be quite different from the feedback law in the
fully-observed case, even in the case of Gaussian noise–see
Section VII for more details.

Notation and Structure: The transpose operation is denoted
by (·)′. If xk, . . . , xt is a sequence of vectors, then xk:t denotes
the batch vector of all xi for k ≤ i ≤ t. We use the notation
‖·‖2 to denote both the square norm of vectors and the spectral
norm of matrices. The σ-algebra generated by a random vector
x is denoted by σ(x). By Lp(F), we denote the space of
F-measurable random variables (vectors) with finite p-order
moments. The remaining paper is structured as follows. In
Section II, we introduce our risk-aware formulation of LQ
control. In Sections III, IV we show that our the risk-aware LQ
problem can be reformulated as a Quadratically Constrained
Quadratic Problem and solved by exploiting Lagrangian duality.
In Sections V, VII, we provide explicit control laws for
the problem of risk-aware LQR and risk-aware LQG control
respectively. In Section VI, we characterize the optimal control
laws in the case of general partially observed systems. We
conclude with numerical simulations in Section VIII and with
remarks in Section IX.

II. RISK-CONSTRAINED LQ FORMULATION

Consider system (1), where xt ∈ Rn is the state, ut ∈ Rp
is the control signal, and yt ∈ Rm is the measured output.
Matrix A ∈ Rn×n is the state transition matrix, B ∈ Rn×p
is the input matrix, and C ∈ Rm×n is the output matrix. We
assume that the initial value x0 is deterministic and fixed.
Signal wt ∈ Rn is a random process noise, while vt ∈ Rm is
a random measurement noise. The process (wt, vt) is assumed
to be i.i.d across time, but it can have any joint distribution
(possibly non-Gaussian). For t ≥ 0, let Ft = σ (y0:t, u0:t) be
the σ-algebra generated by all observables up to time t, and
let F−1 be the trivial σ-algebra. Based on this notation, ut is
Ft-measurable, while (wt+1, vt+1) is independent of Ft. We
also make an additional assumption on the process noise.

Assumption 1 (Noise Regularity). The process wt has finite
fourth-order moment, i.e., for every t ∈ N, E ‖wt‖42 <∞.

The above mild regularity condition is required for our risk
measure to be well-defined. It is satisfied by general noise
distributions, including many heavy-tailed ones. Denote the
mean of the noise by w̄ , Ewk and its variance by W ,
E(wk − w̄)(wk − w̄)′.

As discussed in Section I, the classical LQ problem is risk-
neutral, since it optimizes performance only on average [47].
Still, even if average performance is good, the state can grow
arbitrarily large under less probable, yet extreme events. In
other words, the state can exhibit large variability. To deal with

this issue, we propose a risk-constrained formulation of the
LQ control problem, posed as

min
u

E

{
x′NQxN +

N−1∑
t=0

x′tQxt + u′tRut

}

s.t. E

{
N∑
t=1

[x′tQxt − E (x′tQxt|Ft−1)]
2

}
≤ ε

Dynamics (1)
ut ∈ L4(Ft), t = 0, . . . , N − 1

, (3)

where u = u0:N−1 are the inputs from time 0 up to time N−1,
for some horizon N ∈ N. For each t, the causality constraint
on ut restricts the inputs to the space of Ft-measurable random
vectors of appropriate dimension with bounded fourth-order
moments, denoted as L4(Ft). Here, the risk measure adopted is
the (cumulative expected) predictive variance of the state cost.
The predictive variance incorporates information about the tail
and skewness of the penalty x′tQxt. This forces the controller
to take higher-order noise statistics into account, mitigating the
effect of rare though large noise values. Hence, our risk-aware
LQ formulation not only forces the state xt to be close to zero,
but also explicitly restricts its variability. The initial state is
fixed (for simplicity), so there is no associated risk term for
t = 0. The fourth-order integrability constraint on the inputs
along with Assumption 1 are sufficient to guarantee that the
cumulative expected predictive variance is well-defined.
Remark 1 (Input integrability). The fourth-order integrability
condition ut ∈ L4(Ft) on the inputs is stricter compared with
the risk-neutral formulation, where only square-integrability is
needed. In the general case of partially-observed systems, this
condition is needed to guarantee that the constraint in (3) is well-
defined. However, in many cases of interest, this condition is not
essential. For example, in the fully observed case (Section V),
we can pose problem (3) with the constraint ut ∈ L2(Ft) and
the optimal control is still guaranteed to be in L4(Ft); this is
a byproduct of the noise regularity Assumption 1. The same
holds for the case of partially-observed systems with Gaussian
noise (Section VII). �

Problem (3) offers a simple and interpretable way to control
the trade-off between average performance and risk. By simply
decreasing ε, we increase risk-awareness. Inspired by standard
risk-aware formulations, in the above optimization problem
our risk definition is tied to the specific state penalty x′tQxt.
However, all of our results are still valid if we employ the
predictive variance of a different quadratic form, e.g., the
norm of the state, ‖xt‖22, in the constraint. In the following
sections, we characterize the optimal controllers in the case of
general partially-observed systems. We also provide explicit,
finite-dimensional control laws for the case of i) fully-observed
systems with general noise, which we term risk-aware LQR
controllers; and ii) partially-observed systems with Gaussian
noise, which we term risk-aware LQG controllers.

III. QUADRATIC REFORMULATION OF
RISK-CONSTRAINED LQ CONTROL

The solution procedure of the risk-aware dynamic pro-
gram (3) consists of the following steps. First, we ensure
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the well-definiteness of (3), also showing that (3) can be
equivalently expressed as a sequential variational Quadratically
Contrained Quadratic Program (QCQP), or, more precisely,
as a Quadratically Constrained LQ (QC-LQ) problem (Propo-
sition 1). Then, we exploit Lagrangian duality (Theorem 1)
to solve (3) exactly and in closed form. More specifically,
we first derive an explicit expression for the optimal risk-
aware controller (Theorems 4, 5, 7), given an arbitrary but
fixed Lagrange multiplier. Then, we show how an optimal
Lagrange multiplier may be efficiently discovered via trivial
bisection (Theorem 2).

Since we are dealing with partially observed systems, we
can only approximately estimate the current state xt based on
the information Ft collected so far. Define the state estimate
and the state prediction at time t respectively as

x̂t|t = E(xt|Ft)
x̂t = E(xt|Ft−1).

Note that both values are mean-square optimal, i.e. they
minimize the mean square estimation error (prediction error
respectively) [48]. Under Assumption 1 on wt, and since
ut ∈ L4(Ft) both expectations are well-defined. The state
prediction and the state estimate are related via the expression

x̂t = Ax̂t−1|t−1 +But−1 + w̄.

The innovation (or prediction) error is defined as

δt , xt − x̂t. (4)

Define also the refinement error between the prediction and
the estimate:

et , x̂t|t − x̂t. (5)

Both errors are martingale differences, satisfying the mean
conditions E(et|Ft−1) = 0,E(δt|Ft−1) = 0. Note that in the
general case of non-Gaussian noise, the innovation error δt is
not i.i.d. and not independent of the past in general.

In the following result, we show that the predictive variance
constraint has an underlying quadratic structure.

Proposition 1 (Quadratic Reformulation). Let Assumption 1
be in effect and define the (random) conditional moments

Wt−1 , E(δtδ
′
t|Ft−1)

m3,t−1 , 2QE {δtδ′tQδt|Ft−1}
m4,t−1 , E

{
(δ′tQδt − tr(QWt−1))2|Ft−1

}
.

Then, the risk-constrained LQ problem (3) is well-defined and
equivalent to the sequential variational QCQP

min
u

J(u) , E

{
x′NQxN +

N−1∑
t=0

x′tQxt + u′tRut

}
(6)

s.t. JR(u) , E

{
N∑
t=1

4x̂′tQWt−1Qx̂t + 2x̂′tm3,t−1

}
≤ ε̄

Dynamics (1)
ut ∈ L4(Ft), t = 0, . . . , N − 1,

where ε̄ , ε−∑N
t=1 Em4,t−1.

Proof. Define the state penalty difference:

∆t , x′tQxt − E (x′tQxt|Ft−1) . (7)

Since the inputs ut ∈ L4 and the disturbances wt ∈ L4 have
finite fourth moments, it follows that xt ∈ L4 since it is a
linear combination of inputs and disturbances. As a result,
x′tQxt is integrable, and ∆t is well defined. Next, we find an
expression for ∆2

t . By the definition of x̂t, δt

xt = x̂t + δt,

where the prediction x̂t ∈ L4 is well-defined since xt ∈ L4.
Similarly δt ∈ L4. Based on the above decomposition, the
quadratic form becomes

x′tQxt = x̂′tQx̂t + 2x̂′tQδt + δ′tQδt.

All three terms are integrable since xt ∈ L4 and δt ∈ L4. By
orthogonality, the cross terms have zero expected value:

E(x̂′tQδt|Ft−1) = x̂′tQ(E(δt|Ft−1)) = 0.

This implies that

E(x′tQxt|Ft−1) = x̂′tQx̂t + E(δ′tQδt|Ft−1)

As a result, we obtain the expression

∆t = δ′tQδt − tr(QWt−1) + 2x̂′tQδt,

which leads to

∆2
t = (δ′tQδt − tr(QWt−1))2 + 4x̂′tQδtδ

′
tQx̂t

+ 4x̂′tQδt(δ
′
tQδt − tr(QWt−1)).

Finally, we show that ∆2
t are integrable. Integrability of all

terms follows from the existence of the fourth moments of
δt, ut, x̂t and Hölder’s inequality

E‖α‖p2‖β‖q2 ≤ (E‖α‖42)p/4(E‖β‖42)q/4,

for p+ q = 4, p, q ≥ 0. Hence, the total expected predictive-
variance E

∑N−1
t=0 ∆2

t is well-defined. Moreover, we have

E
{

∆2
t |Ft−1

}
= 4x̂′tQWt−1Qx̂t + 2x̂′tm3,t−1 +m4,t−1.

To complete the proof, we take the expectation and move the
m4,t−1 terms to the right-hand side of the constraint.

The above reformulation enables us to apply duality theory,
as discussed next. Note that the equivalent constraint is
quadratic. The quadratic and linear penalties Wt−1,m3,t−1
are random variables and depend on the observations up to
time t− 1. If the prediction error δt is independent of the past
Ft−1, e.g. in the special case of fully observed systems or
Gaussian noise, then the penalties are deterministic and the
above expressions can be simplified.
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IV. LAGRANGIAN DUALITY

To tackle problem (3), we now consider the variational
Lagrangian L : L2(F0)× · · · × L2(FN−1)× R+ → R of the
sequential QCQP (6), defined as

L(u, µ) , J(u) + µJR(u)− µε̄, (8)

where µ ∈ R+ is a multiplier associated with the variational
risk constraint of (6). Hereafter, problem (6) will be called
the primal problem. Accordingly, the dual function D :R+→
[−∞,∞) is additionally defined as

D(µ) , inf
u∈U0

L(u, µ), (9)

where the implicit feasible set U0 obeys (k ≤ N − 1)

Uk ,
{
uk:N−1 ∈

N−1∏
t=k

L4(Ft)
∣∣∣∣∣xt+1 =Axt+But+wt+1

yt =Cxt+vt

}
,

and contains the constraints of (6) that have not been dualized
in the construction of the Lagrangian in (8). Note that it is
always the case that D ≤ J∗ on R+, where J∗ ∈ [0,∞]
denotes the optimal value of the primal problem (6). Then, the
optimal value of the always concave dual problem

sup
µ≥0

D(µ) ≡ sup
µ≥0

inf
u∈U0

L(u, µ), (10)

D∗, supµ≥0D(µ)∈ [−∞,∞], is the tightest under-estimate
of J∗, when knowing only D.

Leveraging Lagrangian duality, we may now state the
following result, which provides sufficient optimality conditions
for the QCQP (6). The proof is omitted, as it follows as direct
application of [49, Theorem 4.10].

Theorem 1 (Optimality Conditions). Let Assumption 1 be
in effect. Suppose that there exists a feasible policy-multiplier
pair (u∗, µ∗) ∈ U0 × R+ such that

1) L(u∗(µ∗), µ∗) = minu∈U0 L(u, µ∗) = D(µ∗);
2) JR(u∗) ≤ ε̄, i.e., the dualized variational risk constraint

of (6) is satisfied by control policy u∗;
3) µ∗(JR(u∗)− ε̄)=0, i.e., complementary slackness holds.

Then, u∗ is optimal for both the primal problem (6) and the
initial problem (3), µ∗ is optimal for the dual problem (10),
and (6) exhibits zero duality gap, that is, D∗ ≡ P ∗ <∞.

Theorem 1 will be serving as the backbone of our analysis
towards the solution to problem (6). It is sufficient to compute
the relaxed optimal input u∗(µ) of the Lagrangian in (9), for
any given multiplier µ ≥ 0. Then, we can also compute an
optimal multiplier µ∗ via bisection, thus providing a complete
solution to the primal problem. The use of bisection is based on
the following theorem (the proof can be found in the Appendix).

Theorem 2 (Optimal Multiplier). Let Assumption 1 be in
effect. Assume that for any µ ≥ 0 the minimum in (9) is
attained by a control policy u∗(µ) ∈ U0. Assume that the risk
constraint functional JR(u∗(·)) is a continuous function of µ.
Then, the following statements are true:

1) The LQ cost J(u∗(µ)) is increasing with µ ≥ 0, while
the risk constraint functional JR(u∗(µ)) is decreasing.

2) Define the multiplier

µ∗ , inf {µ ≥ 0 : JR(u∗(µ)) ≤ ε̄} . (11)

If µ∗ is finite, then the policy u∗(µ∗) is optimal for the
primal problem (6), and this is the case as long as (6)
satisfies Slater’s condition:

JR(u†) < ε̄, for some u† ∈ U0.
The above result exploits the fact that, under the relaxed

optimal policy u∗(·), both the LQ cost J(u∗(·)) and the risk
functional JR(u∗(·)) are monotone functions. Note that in
order to apply Theorem 2, we need to verify three conditions
i) existence of an optimal solution u∗(µ), ii) continuity of
JR(u∗(µ)), and iii) satisfaction of Slater’s condition. This is
the subject of the following sections.

V. OPTIMAL RISK-AWARE LQR CONTROL

Let us study first the simpler case of fully-observed systems,
where yk = xk, i.e. there is no measurement noise vk = 0
and the output matrix is the identity C = I . This problem is
the risk-constrained version of the classical Linear Quadratic
Regulator (LQR) problem. In this case, the conditional moments
in Proposition 1 can be simplified significantly leading to
an optimal control law which is easy to interpret, providing
intuition for the solution of the general risk-aware LQ problem.

Let µ ≥ 0 be arbitrary but fixed. First, we may simplify the
form of the Lagrangian L and express it within a canonical
dynamic programming framework. In this respect, we have the
following straightforward, but key result.

Lemma 1 (Lagrangian Reformulation). Assume that sys-
tem (1) is fully-observed: yk = xk for all k ≥ 0. Let
Assumption 1 be in effect. Consider the sequential variational
QCQP problem (6). Consider the notation of Proposition 1.
Define the inflated state penalty matrix

Qµ , Q+ 4µQWQ.

Then the innovation process δk = wk − w̄ is i.i.d. and
independent of Fk−1 with

Wt−1 = W, m3,t−1 = m3 , 2QE {δtδ′tQδt}
m4,t−1 = m4 , E

{
(δ′tQδt − tr(QW ))2

}
.

Moreover, for every ut ∈ L4(Ft), t ≤ N − 1, the Lagrangian
function L can be expressed as

L(u, µ) =E

{
N∑
t=1

gt(xt, ut−1, µ)

}
+ g(µ), (12)

where

gt(xt, ut−1, µ) , x′tQµxt + 2µm′3xt + u′t−1Rut−1, t ≤ N
g(µ) , µ

(
−ε̄− 4N tr (WQ)2

)
+ x′0Qx0.

Proof. The properties of δt follow immediately from (1), full
observability, and the fact that wk is i.i.d. As a result, all
moments Wt,m3,t,m4,t are deterministic and constant over
time. For the Lagrangian reformulation, we used Proposition 1,
the form of L, and the identities

E(x̂′kQWQx̂k) = E(xkQWQxk)− E(δ′kQWQδk)
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E(δ′km3) = 0, E(x̂′km3) = E(x′km3).

Remark 2 (Relation to LQR with tracking). The La-
grangian (12) has the structure of a generalized LQR problem
with a tracking objective. Substituting for m3 = QM3, where

M3 , 2E {δtδ′tQδt} ,
we can rewrite the stage cost as

gt(xt, ut, µ) = (xt + µM3)′Q(xt + µM3)

+x′t(4µQWQ)xt + u′tRut − µ2M ′3QM3,

i.e., the state penalty is quadratic and consists of two distinct
terms. The first one, i.e., (xt + µM3)′Q(xt + µM3) is a
tracking error term that forces the state to be close to the
static target −µM3. Informally, in the case of skewed noise,
by tracking −µM3 we pre-compensate for directions in which
the distribution of the noise has heavy tails. This decreases the
statistical variability of the predicted stage cost. The second
term, x′t(4µQWQ)xt, is a standard quadratic penalty term;
notice that, contrary to the risk-neutral case, the covariance
of the noise W now affects the penalty term. Informally, this
term penalizes state directions which not only lead to high cost
but are also more sensitive to noise, as captured by the product
QWQ. Hence, the risk-neutral LQR framework can exhibit
inherent risk-averse properties, provided that its parameters
are selected in a principled way. Of course, selecting those
parameters a priori is not trivial. �

The structure of the Lagrangian as suggested by Lemma 1
enables us to derive both a closed-form expression for its
minimum and an explicit optimal control policy. To this end,
define the optimal cost-to-go at stage k ≤ N − 1 as

L∗k(xk, µ) , inf
uk:N−1∈Uk

E

{
N−1∑
t=k

gt+1(xt+1, ut, µ)

∣∣∣∣∣Fk
}
,

where we omit the constant components of the Lagrangian.
Under this definition, it is true that

D(µ) ≡ inf
u∈U0

L(u, µ) = L∗0(x0, µ) + g(µ).

We may now derive the complete solution to (9), which provides
optimal risk-aware control policies for every multiplier µ ≥ 0.

Theorem 3 (LQR Risk-Aware Controllers). Assume that
system (1) is fully-observed: yk = xk for all k ≥ 0. Let
Assumption 1 be in effect, choose µ ≥ 0, and adopt the notation
of Lemma 1. For t ≤ N − 1, the optimal cost-to-go L∗t (xt, µ)
may be expressed as

L∗t (xt, µ) = x′t(Vt −Qµ)xt + 2(ξt − µm3)′xt + ct,

where the quantities Vt, ξt, and ct are evaluated through the
backward recursions

Vt−1 =A′VtA+Qµ−A′VtB(B′VtB+R)−1B′VtA, (13)

Kt−1 =−(B′VtB +R)−1B′VtA, (14)
ξt−1 = (A+BKt−1)′(ξt + Vtw̄) + µm3, (15)

lt−1 = −(B′VtB +R)−1B′(ξt + Vtw̄), (16)
ct−1 = ct + tr(WVt) + 2ξ′tw̄ + w̄′Vtw̄

− l′t−1(B′VtB +R)lt−1, (17)

with terminal values VN = Qµ, ξN = µm3, and cN = 0.
Additionally, an optimal control policy that achieves the dual
value in (9) may be expressed as

u∗t (µ) = Ktxt + lt ∈ L4(Ft), ∀t ≤ N − 1, (18)

and is unique up to sets of probability measure zero.

Proof. The proof is similar to that of Theorem 5 in Section VI
and is, thus, omitted. The only difference is that we need to
verify that the input has bounded fourth moments u∗t (µ) ∈
L4(Ft) under Assumption 1. This can be inferred recursively
by (18) and by the fact that Kt, lt are deterministic constants
for all t ≥ 0 (at all time steps the input is a linear combination
of random variables with bounded fourth moments).

As suggested by Remark 2, it turns out that the optimal
controller (18) is affine with respect to the state. If we expand ξt,
we can see that the affine term `t consists of two components:

lt = −(B′VtB +R)−1B′(Stµm3 + Ttw̄),

for some appropriate matrices St, Tt:

St = (A+BKt)
′St+1 + I, SN = I

Tt = (A+BKt)
′(Tt+1 + Vt+1), TN = 0.

One component forces the state to track the reference −µm3,
which points away from heavy-tailed regions of the noise
distribution. The other component acts against the mean value
of the noise–such a term also appears in risk-neutral LQR.
Meanwhile, the state-feedback term accounts for the internal
dynamics. Similar to the risk-neutral case, the controller’s
behavior is governed by a Riccati difference equation (13).
However, we now have an inflated stage cost matrix Qµ =
Q + 4µQWQ, instead of the original. As suggested by the
product QWQ, the risk-aware control gain becomes more strict
in directions that are simultaneously more costly and prone to
noise, as captured by the covariance W . As a sanity check,
we can verify that for µ = 0, we recover the risk-neutral LQR
optimal controller, i.e. Q0 = Q and lt depends only on the
mean value of the noise w̄

Since Vt in (13) satisfies a standard Riccati difference
equation with an inflated matrix Qµ, we immediately obtain
from standard LQR theory that for any µ ≥ 0, the optimal
controller (18) will be internally stable. Matrix A+BKt will
converge and its spectral radius will eventually be bounded
as ρ(A+BKt) < 1, as the horizon N grows to infinity. The
conditions for stability remain the same as in risk-neutral LQR.

Assumption 2 (Controllability). The pair (A,B) is stabiliz-
able, the pair (A,Q1/2) is detectable, matrix Q � 0 is positive
semi-definite and matrix R � 0 is positive definite.

Corollary 1 (Internal Stability). Let Assumptions 1 and 2
be in effect, and adopt the notation of Lemma 1. For fixed
µ ≥ 0, consider the control policy u∗(µ), as defined in (18).
As N → ∞, Vt converges exponentially fast to the unique
stabilizing solution1 of the algebraic Riccati equation

V = A′V A+Qµ −A′V B(B′V B +R)−1B′V A.

1A stabilizing solution renders A+BK stable.
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As a result, for every t ≥ 0, it is true that, as N →∞,

Kt → K , −(B′V B +R)−1B′V A,

ξt → ξ , (I − (A+BK)′)−1 {(A+BK)′V w̄ + µm3} ,
lt → l , −(B′V B +R)−1B′(ξ + V w̄),

exponentially fast, and the closed-loop matrix A+BK is stable
(spectral radius ρ(A+BK) < 1).

Proof. Since Qµ � Q and (A,Q1/2) is detectable, the pair
(A,Q

1/2
µ ) is also detectable. Since (A,B) is stabilizable,

(A,Q
1/2
µ ) is detectable, and R � 0, the exponential conver-

gence of Vt and Kt to V and K respectively, and the stability
of A+BK follow from standard LQR theory [48, Chapter 4].
The proof of the convergence of the remaining terms follows
similar steps.

A. Recovery of Primal-Optimal Solutions
Up to now we have discussed the properties of the optimal

controller given a fixed µ ≥ 0. In what follows, we show how
to compute an optimal multiplier µ∗ based on Theorems 1, 2.
For any fixed µ ≥ 0, we provide a closed-form expression for
evaluating the risk functional JR(u∗(µ)). Moreover, we show
that JR(u∗(·)) is a continuous function of µ. Hence, if Slater’s
condition is satisfied, then based on Theorem 2, we can find
the optimal multiplier µ∗ by trivially applying bisection on µ.

The evaluation of the risk constraint functional JR(u∗(µ))
may be performed in a recursive fashion, as the following
result suggests.

Proposition 2 (Risk Functional Evaluation). Assume that
system (1) is fully-observed: yk = xk for all k ≥ 0. Let
Assumption 1 be in effect, and adopt the notation of Lemma 1.
For fixed µ ≥ 0, consider the control policy u∗(µ), as defined
in (18). With terminal values PN = 4QWQ, ζN = m3, dN =
0, consider the backward recursions

Pt−1 = (A+BKt−1)′Pt(A+BKt−1) + 4QWQ,

ζt−1 = (A+BKt−1)′ζt +m3

+ (A+BKt−1)′Pt (Blt−1 + w̄) and

dt−1 = dt + tr
(
[Pt−1 − 4QWQ]W

)
+ 2ζ ′t(w̄ +Blt−1) + (Blt−1 + w̄)′Pt(Blt−1 + w̄).

Then, the risk constraint in problem (6) may be evaluated by

JR(u∗(µ)) = x′0(P0 − 4QWQ)x0 + 2(ζ ′0 −m3)x0

+ d0 − tr
(
[P0 − 4QWQ]W

)
Moreover, the risk-functional JR(u∗(·)) is continuous.

Proof. Omitted; it is similar to that of Proposition 3 in
Section VI. To prove continuity it is sufficient to invoke
invertibility of R. We don’t need Assumption 3 since the
expressions above are deterministic. As a result, Assumption 1
suffices.

Now, we can obtain the optimal solution u∗(µ∗) to the
original problem (6) for fully observed systems.

Theorem 4 (Primal-Optimal Solution). Assume that sys-
tem (1) is fully-observed: yk = xk for all k ≥ 0. Let

Assumption 1 be in effect, and adopt the notation of Lemma 1.
Define the minimum feasible ε̄inf :

ε̄inf , inf
u∈U0

JR(u).

Then, for any ε̄ > ε̄inf , problem (6) is feasible and the optimal
solution is given by u∗(µ∗) based on (11), (18).

Proof. Omitted; it is similar to the proof of Theorem 6.

Note that solving the problem

inf
u∈U0

JR(u) = inf
u∈U0

E
N∑
k=1

x̂′kQWQx̂k + 2m′3x̂k

corresponds to finding a maximally risk-aware policy. Since the
risk functional is quadratic, we can solve the problem following
standard LQR theory. Note that the problem is singular since
there is no input penalty in JR and the matrix QWQ could
be singular. Hence, there might be multiple optimal solutions.
Nonetheless, we can still obtain an admissible optimal solution
so that the infimum becomes minimum; such a solution will
involve pseudo-inverses instead of inverses. More information
about singular LQR control can be found in [50].

The above problem characterizes the minimum value of ε
such that (3) is feasible. Note that as we increase ε, we relax
the risk-aware requirements. Let εLQR , JR(u∗(0)) be the
value of the risk functional evaluated at the risk-neutral LQR
optimal controller. Then, trivially if ε reaches a large value,
i.e. larger than εLQR, then the risk-neutral LQR controller will
become feasible. After that point, if we keep increasing ε, the
risk-neutral LQR controller will always be the optimal solution
to (3) with µ∗ = 0. Hence, to obtain risk-aware behaviors, we
need to select ε < εLQR.

VI. OPTIMAL RISK-AWARE LQ CONTROL

In this section we study problem (6) in its full generality,
when we only have access to partial state measurements. Fix
a Lagrange multiplier µ ≥ 0 and recall the definition of
Lagrangian L in (8). Before we derive the optimal control
law, let us simplify the form of the Lagrangian L. For brevity,
denote the information up to time t (extended state) by
zt = (y0:t, u0:t−1), z0 = y0. Then, we get the following result.

Lemma 2 (Lagrangian Reformulation). Let Assumption 1 be
in effect. Consider the sequential variational QCQP problem (6)
and define the inflated state penalty matrix

Qµ,t , Q+ 4µQWtQ.

Then, for every ut ∈ L4(Ft), t ≤ N − 1, the Lagrangian
function L can be expressed as

L(u, µ) = E

{
N−1∑
t=0

gt(zt, ut, µ)

}
+ g(µ), (19)

where

gt(zt, ut, µ) =x̂′t+1Qµ,tx̂t+1 + 2µx̂′t+1m3,t + u′tRut

g(µ) =− µε̄+ E
N−1∑
t=0

tr(QWt) + x′0Qx0.
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Proof. It follows from Proposition 1 and

Ex′tQxt = E {E(x′tQxt|Ft−1)}
= Ex̂′tQx̂t + E {E(δ′tQδt|Ft−1)}
= Ex̂′tQx̂t + E tr(QWt−1).

Following the same convention as in the fully-observed case,
we define the optimal cost-to-go at stage k ≤ N − 1 as

L∗k(zk, µ) , inf
uk:N−1∈Uk

E

{
N−1∑
t=k

gt(zt, ut, µ)

∣∣∣∣∣Fk
}
.

where we omit the constant components of the Lagrangian.
We may now derive a closed-form solution to (10), which

provides optimal risk-aware control policies for every fixed
multiplier µ ≥ 0. The above formulation in Lemma 2 only
requires the noise signals to satisfy Assumption 1. However, to
guarantee that our closed-form optimal controller below is well-
defined and has finite fourth moments, we need the following
sufficient stricter assumption, which strengthens Assumption 1.

Assumption 3 (Strict noise regularity). The process noise
wt has finite moments E‖wt‖p2 <∞, for any order p ≥ 1 and
any time t ∈ N.

Theorem 5 (LQ Risk-Aware Controllers). Let Assumption 3
be in effect. Fix a multiplier µ ≥ 0 and adopt the notation
of Lemma 2. Recall the definition of the refinement error et
in (5). Then, the optimal cost-to-go at time t is given by:

L∗t (zt, µ) = x̂′t|tPtx̂t|t + 2ζ ′tx̂t|t + ct, (20)

where Pt, ζt, ct are Ft-measurable, given by the recursions:

Vt = E(Pt+1|Ft) +Qµ,t (21)
ξt = E(Pt+1et+1 + ζt+1|Ft) + µm3,t (22)

dt = E
{
ct+1 + e′t+1Pt+1et+1 + 2e′t+1ζt+1|Ft

}
(23)

Kt = −(B′VtB +R)−1B′VtA (24)

lt = −(B′VtB +R)−1B′(ξt + Vtw̄) (25)
Pt = (A+BKt)

′Vt(A+BKt) +K ′tRKt (26)
ζt = (A+BKt)

′(ξt + Vtw̄) (27)
ct = dt + w̄′Vtw̄ − l′t(B′VtB +R)lt + 2ξ′tw̄ (28)

with initial values PN = 0, ζN = 0, cN = 0. Additionally, an
optimal control policy that achieves the dual value in (9) may
be expressed as:

u∗t (µ) = Ktx̂t|t + lt ∈ L4(Ft). (29)

The proof can be found in the Appendix. Note that for the
well-posedness of the solution, we only need i) the conditional
moments in (21)-(23) to be well-defined, and ii) fourth-moment
integrability of the optimal inputs in (29). Assumption 3 is
only a sufficient condition so that the above conditions are
satisfied. It might not be a necessary condition. For example, in
the fully-observed case (Section V), the milder Assumption 1
suffices. Here, the technical difficulty stems from the fact that
in the general case, Kt is stochastic and potentially unbounded.
We leave further discussion for future work.

Interestingly, in the partially observed case the control law
is still affine-like. However, the linear and affine terms are

no longer constants. They evolve based on a new filtered
version of the Riccati difference equation, see (21), (26). They
are random variables that depend exclusively on the stochastic
dynamics (noises) of the system. The intuition behind the linear
gain and the affine term is similar to the fully-observed case,
however, there is a major difference. Instead of accounting
only for the process noise wk, we account for the whole
prediction error xk − x̂k, which captures also the estimation
uncertainty. The control policy and the estimation process are
intertwined, in the sense that the latter affects the gain and
the affine part. Hence, the control policy cannot be designed
independently of the estimation process/noise statistics. In other
words, the certainty equivalence property (see [22]) does not
hold. However, separation holds weakly in the sense that the
optimal state estimator x̂t|t in (29) is the minimum mean-
square error (mmse) estimator and can be designed separately
from the optimal controller.

A. Recovery of Primal-Optimal Solutions
In this subsection, we provide a closed-form expression to

evaluate the risk functional JR(u∗(µ)). Moreover, we show that
JR(u∗(·)) is a continuous function of µ. Similar to the fully-
observed case, if Slater’s condition is satisfied, then we can
find the optimal multiplier µ∗ by trivially applying bisection.

Proposition 3 (Risk Functional Evaluation). Let Assumption
3 be in effect, and adopt the notation of Lemma 2. Recall the
definition of the refinement error et in (5). For fixed µ ≥ 0,
consider the control policy u∗(µ), as defined in (29). With
terminal values HN−1 = 4QWN−1Q, fN−1 = m3,N−1, gN =
0, consider the backward recursions

Θt = (A+BKt)
′Ht(A+BKt)

Ht−1 = E(Θt|Ft−1) + 4QWt−1Q

ηt = (A+BKt)
′(ft +Ht(Blt + w̄))

ft−1 = E(ηt + Θtet|Ft−1) +m3,t−1

γt = gt + (Blt + w̄)′Ht(Blt + w̄) + 2(Blt + w̄)′ft

gt−1 = E(γt + e′tΘtet + 2e′tηt|Ft−1)

Then, the risk constraint in problem (6) may be evaluated by

JR(u∗(µ)) = x′0E(Θ0)x0 + 2E(η′0)x0 + E(γ0).

Moreover, the risk functional JR(u∗(µ)) is a continuous
function of µ.

Finally, for completeness we state the following theorem
which completely characterizes the solution to the primal
problem (6).

Theorem 6 (Primal-Optimal Solution). Let Assumption 3
be in effect, and adopt the notation of Lemma 2. Define the
minimum feasible ε̄inf :

ε̄inf , inf
u∈U0

JR(u).

Then, for any ε̄ > ε̄inf , problem (6) is feasible and the optimal
solution is given by u∗(µ∗) based on (11), (29).

Proof. It follows from Proposition 3 that JR(u∗(·)) is con-
tinuous. Hence, if Slater’s condition is satisfied, optimality
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follows from Theorems 1, 2. We only need to show that
Slater’s condition is satisfied under ε̄ > ε̄inf . This follows
from the definition of infimum; there exists u† ∈ U0 such that
JR(u†) ≤ ε̄inf + (ε̄− ε̄inf)/2 < ε̄.

Although the recursions of Theorem 5 and Proposition 3
provide a closed-form solution, they require knowledge of
several conditional moments. In reality, these conditional
moments might be hard to track. Another side effect of the
stochasticity of Kt is that the result of Corollary 1 will no
longer apply for general partially-observed systems; the gains
will not converge pointwise in general. As a consequence, any
stability analysis of (29) might require further assumptions,
beyond the scope of this paper. Nonetheless, in the case of
Gaussian noise we can solve both challenges; we can compute
these moments exactly and we can prove stability under certain
controllability/observability conditions.

VII. OPTIMAL RISK-AWARE LQG CONTROL

In the special case of Gaussian measurement and process
noise, the innovation error δt is actually independent of the
past Ft−1. Therefore, the moments defined in Proposition 1
are deterministic, and the recursive formulas for the control
policy and the risk-evaluation can be simplified dramatically. In
this section, we focus on exactly this case and provide explicit
formulas for optimal risk-aware LQG controllers.

Assumption 4 (Gaussian Noise). The process noise and
measurement noise wk, vk are jointly i.i.d. Gaussian with
mean w̄, 0 respectively and covariance

E
[
wk
vk

] [
wk
vk

]′
=

[
W 0
0 S

]
.

Theorem 7 (LQG Risk-Aware Controllers). Let Assump-
tion 4 be in effect. Fix a multiplier µ ≥ 0 and consider the
notation of Theorem 5. The innovation sequence δt, t ≥ 0
is Gaussian and independent with covariance given by the
forward recursion (Kalman Filter)

Wt+1 = AWtA
′ +W −AWtC

′(CWtC
′ + S)−1CWtA

′

for W0 = 0. The mean square estimate x̂t|t is given by

x̂t|t = x̂t +WtC
′(CWtC

′ + S)−1(yt − x̂t).
Consider the backward recursion

Vt−1 = (A+BKt)
′Vt(A+BKt) +K ′tRKt +Qµ,t−1 (30)

ξt−1 = (A+BKt)
′(ξt + Vtw̄) (31)

Kt = −(B′VtB +R)−1B′VtA (32)

lt = −(B′VtB +R)−1B′ξt (33)

with initial values VN−1 = Qµ,N−1, ξN−1 = 0. An optimal
control policy that achieves the dual value in (9) may be
expressed as

u∗t (µ) = Ktx̂t|t + lt. (34)

Proof. The properties of δt and the recursions for Wt, x̂t|t
follow from standard Kalman Filter theory [48]. We also
have m3,t = 0 since the variables δt are Gaussian and, thus,

symmetric. Since both Wt, m3,t are deterministic, matrices
Vt, Pt, ξt, ζt in the statement of Theorem 5 are also determin-
istic. Hence, we have E(Ptet|Ft) = 0 and we can remove the
conditional expectations from Vt, ξt as

Vt = Pt+1 +Qµ,t, ξt = ζt+1,

and the result now follows from Theorem 5.

Unlike the fully-observed case, the inflated matrix takes into
account not only the instantaneous process error W but the
whole prediction error. In other words, we account also for the
uncertainty in the prediction due to partial observability.

The aforementioned property also differentiates our controller
from classical risk-neutral Linear Quadratic Gaussian (LQG)
control. The state penalties Qµ,t are inflated, time-varying, and
they depend on the filtering process Wt itself, whereas, in
risk-neutral LQG, the control design is completely independent
of the noise statistics. Hence, we obtain a novel family of
risk-aware LQG policies, which include the classical LQG
(µ = 0) as a special case.

In the case of Gaussian noise the third moment m3,t = 0 is
always zero due to symmetry. Contrary to the non-Guassian
noise case, the affine term only accounts for the mean value of
the noise. As a result, risk-aware behavior is mainly imposed
through the gain Kt.

Finally, we prove a stability result for the closed-loop system
under certain observability conditions.

Assumption 5 (Observability). The pair (A,C) is detectable,
the pair (A,W 1/2) is stabilizable, and the covariance of the
measurement noise is strictly positive definite S � 0.

To prove stability let us assume that we start estimat-
ing/controlling the system at some arbitrary time t0 < N
instead of 0, with xt0 deterministic and known. Based on this,
all recursions in the statement of Theorem 7 are extended to
hold for any t = t0, . . . , N , with Wt0 = 0, x̂t0|t0 = xt0 . We
will prove that stability is achieved as we let the initial state
t0 and the horizon N go to −∞ and +∞ respectively.

To simplify the proof, we also assume that the state penalty
is strictly positive definite Q � 0. The proof can be extended
to the case Q � 0 at the cost of more complicated arguments,
but we omit it in this paper-see proof in the Appendix for
discussion.

Theorem 8 (Stability). Consider the forward and back-
ward recursions of Theorem 7 extended to the interval t ∈
{t0, . . . , N − 1}, with initial conditions Wt0 = 0, x̂t0|t0 = 0
and terminal conditions as is. Let Assumptions 2, 4, 5 be in
effect. Let V , W∞ be the stabilizing solutions to the Discrete
Algebraic Riccati Equations (DARE):

W∞ = AW∞A
′ +W −AW∞C ′(CW∞C + S)−1CW∞A

′

V = A′V A+Qµ,∞ −A′V B(B′V B +R)−1B′V A,

with Qµ,∞ = Q+µQW∞Q. Let K , −(B′V B+R)−1B′V A
be the respective control gain, with Ā , A+BK the closed-
loop matrix. Then, the closed-loop matrix Ā is stable and

‖Vt − V ‖2 ≤ C1‖ĀN−t−1‖+ C2‖Wt −W∞‖2, (35)
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Fig. 2. Evolution of the state penalties x′
kQxk, over the first 50 steps.

Notice that our risk-aware LQR controller indeed limits the variability of
x′
kQxk. In fact, it sacrifices performance under small wind forces, but

protects the system against large wind gusts, for example at time 5− 10.

where C1, C2 are some positive constants that depend on the
system parameters and V . As a result, if we let N → ∞,
t0 → −∞:

Vt → V, Kt → K, Wt →W

ξt → ξ , (I − (A+BK)′)−1(A+BK)′V w̄

lt → −(B′V B +R)−1B′ξ,

exponentially fast.

The intuition behind sending t0 and N to −∞, ∞ is
the following. This corresponds to a doubly infinite horizon
problem, where the estimation process has started infinitely long
ago in the past and the control process is running continuously
for an infinite amount of time. At first sight, the result seems
to be equivalent to proving stability of the classical risk-neutral
LQG controller. However, by a more careful examination,
equation (35) is different from classical LQG. The reason is
that the second term C2‖Wt −W∞‖2 shows up in the error
only in the case of risk-aware LQG. While estimation and
control are designed independently in risk-neutral LQG, in the
case of risk-aware LQG, the estimation procedure affects the
convergence of the controller to its steady-state.

Similar to LEQG control for partially observed systems,
our risk-aware controller regulates the state more strictly.
However, this is achieved via a different mechanism, that
is, via the inflation of the state penalty term. As a result, in
our formulation, stability is guaranteed for any choice of µ
in (34). This is unlike LEQG control, which might be unstable
if we do not tune the exponential parameter θ carefully [22].
Notice also that the optimal estimator for our risk-aware LQG
controller in (34) is the minimum mean-square estimator. This
is different from LEQG control, where the estimator is a biased
version of the minimum mean-square estimator.

VIII. SIMULATIONS AND DISCUSSION

Consider a flying robot that moves on a horizontal plane,
i.e., the Euclidean space R2. We assume that its linearized
dynamics can be abstracted by a double integrator as

xk+1 =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

xk +


T 2
s

2 0
Ts 0

0
T 2
s

2
0 Ts

 (ηk + dk),
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Fig. 3. The time-empirical cdf for the state penalties x′
kQxk, k ≤ N ,

for the LQR (risk-neutral), our method, and LEQG. Our method sacrifices
some average performance but exhibits much smaller variability for the
state penalties. It protects the system against rare but large wind gusts.

where Ts = 0.5 is the sampling time, xk,1, xk,3 are the position
coordinates, xk,2, xk,4 the respective velocities and ηk is the
acceleration input. Let dk be a wind disturbance force that acts
on the robot, which is modeled as follows: We assume that dk,1
constitutes the dominant wind direction with non-zero mean and
large variability, while the orthogonal direction dk,2 is a weak
wind direction with zero mean and small variability. We model
dk,1 as a mixture of two gaussians N (30, 30), N (80, 60) with
weights 0.8 and 0.2, respectively. This bimodal distribution
models the presence of infrequent but large wind gusts. The
weak direction dk,2 is modeled as zero-mean Gaussian N (0, 5).
If we cancel the mean of dk by applying ηk = uk −Edk, then
the system can be re-written in terms of (1), where wk =
B(dk − Edk) is now a zero-mean disturbance w̄ = 0, and uk
is the exogenous input.

Consider now the LQR problem with parameters

Q = diag(1, 0.1, 2, 0.1) and R = I,

and a horizon of length N = 5000. We primarily compare
our risk-aware LQR formulation with the classical, risk-neutral
LQR via simulations. To tune our controller, we vary µ in (18)
directly instead of varying ε. We also (heuristically) compare
our controller with the exponential (LEQG) method, even
though the noise is not Gaussian, by plugging in the second
order statistics W . Let the tuning parameter of LEQG be
θ. Note that the exponential problem is well defined only
if θ < 0.001276 (roughly), where the “neurotic breakdown”
occurs [13]. For the purpose of comparison, we simulate all
schemes under the same noise sequence w0:N .

In Fig. 2, we see the evolution of the state penalty terms
x′kQxk, for the first 50 time steps, under the different control
schemes. By slightly sacrificing performance under small wind
forces, our risk-aware LQR controller forces the state to have
less variability and protects the robot against large gusts. On
the other hand, the state penalty can grow very large under the
risk-neutral and LEQG schemes. This behavior is illustrated
more clearly in Fig. 3, where we present the time-empirical
cumulative distribution of the state penalties for all N time
steps. The time-empirical ”probability” of suffering large state
penalties is drastically smaller compared to LQR or LEQG.

To better illustrate how the proposed risk-aware controller
works, we also discuss the evolution of the position xk,1 and
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Fig. 4. Evolution of the state xk,1, and the input uk,1 over the first
50 steps. The controller pushes the state away from the direction of
the large gusts, which helps the robot to avoid extreme perturbations.
Meanwhile, by inflating the state penalty with the µQWQ, we force the
state-feedback component to be more cautious with the state. Naturally,
being more cautious with the state requires extra control effort.

the input uk,1, as shown in Fig. 4, for the first 50 steps.
First, we observe that the controller pushes the state xk,1
towards negative values, away from the direction of the large
gusts. Second, notice that we penalize xk,3 more in Q. In
fact, the risk-neutral LQR results in the steady state gains
KLQR,11 = −0.697, KLQR,12 = −1.201, KLQR,23 = −0.925,
KLQR,24 = −1.376, i.e., it is stricter with direction xk,3.
However, xk,1 exhibits more variability due to the strong wind
direction. In contrast, our risk-aware scheme adapts to the
noise in a principled way. Due to the inflation term µQWQ,
our scheme returns the steady-state gains K11 = −2.1008,
K12 = −2.2132, K23 = −1.1161, K24 = −1.5131, which
means that the risky direction xk,1 is controlled more strictly.
Naturally, being more cautious with the state leads to higher
control effort, as shown in Fig. 4. Lastly, although the LEQG
controller is also more state-cautious, it is agnostic to the heavy
tails of the wind distribution. Hence, it still suffers from large
perturbation due to the wind gusts.

A. Risk-aware LQG control
In this section we evaluate the risk-aware LQG controller

developed in Section VII. We use the penalty matrices

Q = diag(1, 0.5, 2, 0.5) and R = I.

However, the process noise is now mean-zero Gaussian, with
dk,1 ∼ N (0, 30) and dk,2 ∼ N (0, 5). For the measurement
model, we assume

C =

[
1 0 0 0
0 0 1 0

]
, Evkv′k =

[
5 2
2 2

]
,

which implies that we have access to position measurements.
We compare our risk-aware LQG controller with the risk-neutral
LQG and the LEQG schemes. For the LEQG scheme, we used
the non-delayed version [22][Th 10.5].
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Fig. 5. Evolution of the state penalties x′
kQxk, over the first 50 steps.

Our risk-aware LQG controller regulates the state more strictly by using
more control effort. A similar property holds for the LEQG controller. The
risk-neutral LQG controller suffers from larger state perturbations.

We simulated the system for a horizon of length N = 3000.
The evolution of the state penalties for the first 50 time steps
is shown in Fig. 5. As expected from (34), the controller
regulates the state more strictly compared to the risk-neutral
LQG controller, by inflating the Q matrix. Note that contrary
to the fully-observed example, the noise is zero-mean Gaussian
here, hence, there is no affine term in the optimal controller.
We observed that the LEQG controller has similar behavior
for small values of the exponential parameter θ.

A more detailed comparison is shown in Fig. 6, where the
time-empirical cumulative distributions of the state penalties
and the input penalties over 3000 time steps are shown. As we
require our controller to be more risk-aware (we increase µ),
the state penalties become smaller since the risky directions
of the state are regulated more strictly. Naturally, regulating
the state more strictly requires more control effort, hence the
input penalties become larger. As we approach the maximally-
risk aware controller (µ = 100), we achieve the smallest state
penalties but the largest input penalties.

For small exponential parameters θ (below 0.006) a similar
behavior is observed in the case of the LEQG controller. As we
increase θ, the state is regulated more strictly at the expense of
increased control effort. We achieve the smallest state penalties
for roughly θ = 0.006. After this value, the tradeoff between
control effort and state regulation becomes worse; for example,
here both the state penalties and the input penalties increase as
we increase θ past 0.006. In fact, as θ approaches the “neurotic
breakdown” point, e.g. for θ = 0.01, both penalties become
excessively large. This might be expected since the LEQG
maximally risk-aware controller is very conservative, treating
the noise as being adversarial rather than being stochastic,
which is a different regime. On the contrary, our risk-aware
LQG controller is well-behaved regardless the value of µ.
Hence it is more easy to tune and offers a wider variety of
tradeoff curves between control effort and state regulation. For
example, if we compare the risk-aware LQG controller for
µ = 0.5 and the LEQG controller for θ = 0.006, then the
risk-aware LQG controller achieves similar state penalties with
less control effort.

IX. CONCLUSION

We studied a novel risk-aware formulation of the classical
Linear Quadratic control problem, where we minimize average
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Fig. 6. The time-empirical cdfs for the state and input penalties x′
kQxk,

u′
kRuk under our method, the LEQG controller, and the LQG (risk-

neutral) controller. For better visibility we show the probabilities (y-axis)
for penalties above the value of 10 (x-axis). Our risk-aware formulation
is more flexible, resulting in a wider variety of tradeoff curves between
control effort and state regulation. It is more intuitive and easy to tune; as
we increase µ we give more emphasis into regulating the risky directions
of the state. The LEQG controller is less intuitive to tune. If θ increases
too much there is a sharp decline in performance.

performance, subject to predictive variance constraints. This
gives rise to risk-aware controllers which trade between average
performance and protection against uncommon but strong
random disturbances. Our formulation is well-defined for
general noise distributions, without requiring the existence of
the respective moment generating functions. We characterized
the optimal control laws for general partially-observed systems,
which are affine with respect to the minimum mean-square state
estimate. We provided explicit risk-aware control formulas for
the special cases of i) fully-observed systems and ii) Gaussian
noise. The optimal controllers are easy to tune and are internally
stable under standard controllability/observability conditions.

Moving forward, there are numerous interesting research
directions. First, our formulation places more emphasis on
regulating the state at the cost of increased control effort.
To mitigate this, we could potentially include input power
constraints [51] in the quadratic formulation (6). Another open
problem is explicitly computing the optimal control (29) in the
case of partially-observed systems with non-Gaussian noise.
Providing explicit closed-form expressions in this case is a hard
problem, since it requires tracking of conditional moments.
However, it might be possible to provide computational
methods, which solve the problem approximately. Lastly,
our predictive variance constraint is based on one-step-ahead
prediction. In some cases, this might make our controller more
myopic. Increasing the prediction horizon, however, might not
always preserve the quadratic form of the constraint. In future
work, we would also like to address this issue.
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[5] H. Föllmer and A. Schied, “Convex Measures of Risk and Trading
Constraints,” Finance and Stochastics, vol. 6, no. 4, pp. 429–447, Oct.
2002.

[6] D. Shang, V. Kuzmenko, and S. Uryasev, “Cash Flow Matching with
Risks Controlled by Buffered Probability of Exceedance and Conditional
Value-at-Risk,” Annals of Operations Research, vol. 260, no. 1-2, pp.
501–514, Jan. 2018.

[7] S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-Directional
Value Learning for Risk-Aware Planning Under Uncertainty,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2493–2500, 2019.

[8] A. A. Pereira, J. Binney, G. A. Hollinger, and G. S. Sukhatme, “Risk-
Aware Path Planning for Autonomous Underwater Vehicles using
Predictive Ocean Models,” Journal of Field Robotics, vol. 30, no. 5, pp.
741–762, Sep. 2013.

[9] W.-J. Ma, C. Oh, Y. Liu, D. Dentcheva, and M. M. Zavlanos, “Risk-
Averse Access Point Selection in Wireless Communication Networks,”
IEEE Transactions on Control of Network Systems, vol. 5870, no. c, pp.
1–1, 2018.

[10] S. Samuelson and I. Yang, “Safety-Aware Optimal Control of Stochastic
Systems Using Conditional Value-at-Risk,” in 2018 Annual American
Control Conference (ACC), 2018, pp. 6285–6290.

[11] M. P. Chapman, J. Lacotte, A. Tamar, D. Lee, K. M. Smith, V. Cheng,
J. F. Fisac, S. Jha, M. Pavone, and C. J. Tomlin, “A Risk-Sensitive Finite-
Time Reachability Approach for Safety of Stochastic Dynamic Systems,”
in 2019 American Control Conference (ACC), 2019, pp. 2958–2963.

[12] D. Jacobson, “Optimal Stochastic Linear Systems with Exponential
Performance Criteria and their Relation to Deterministic Differential
Games,” IEEE Transactions on Automatic Control, vol. 18, no. 2, pp.
124–131, 1973.

[13] P. Whittle, “Risk-Sensitive Linear/Quadratic/Gaussian Control,” Adv. Appl.
Prob, vol. 13, pp. 764–777, 1981.
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APPENDIX

PROOF OF THEOREM 2

To prove part 1), let µ2 > µ1 ≥ 0. From the definition of the
Lagrangian and optimality of the controller u∗(µ), we obtain
the inequalities

J(u∗(µ1)) + µ1JR(u∗(µ1)) ≤ J(u∗(µ2)) + µ1JR(u∗(µ2))

J(u∗(µ1)) + µ2JR(u∗(µ1)) ≥ J(u∗(µ2)) + µ2JR(u∗(µ2)).

By subtracting, we get

(µ2 − µ1) {JR(u∗(µ1))− JR(u∗(µ2))} ≥ 0,

which shows that JR(u∗(µ1)) ≥ JR(u∗(µ2)). The proof of
J(u∗(µ1)) ≤ J(u∗(µ2)) is similar.

To prove part 2), we first show that, whenever µ∗ < ∞,
µ∗(JR(u∗(µ∗))− ε̄)=0, i.e., complementary slackness holds.
We have two cases: either µ∗ = 0, where complementary
slackness is satisfied trivially; or µ∗ > 0, JR(u∗(µ∗)) ≤ ε̄.
Therefore, it will be sufficient to show that in the latter case
we can only have JR(u∗(µ∗)) = ε̄. Since µ∗ > 0, it is true
that JR(u∗(0)) > ε̄. Now, assume that JR(u∗(µ∗)) < ε̄. Then
by the assumption of continuity of JR(u∗(µ)), there exists
a 0 < µ̄ < µ∗ such that JR(u∗(µ̄)) = ε̄, contradicting the
definition of µ∗. Hence, we can only have JR(u∗(µ∗)) = ε̄,
which shows that complementary slackness is satisfied.

Now, complementary slackness, along with the trivial fact
that JR(u∗(µ∗)) ≤ ε̄ imply that the policy-multiplier pair
(u∗(µ∗), µ∗) ∈ U0 × R+ satisfies the sufficient conditions for
optimality provided by Theorem 1. Enough said.

To prove the last claim of part 2), suppose that (6) satisfies
Slater’s condition. For every µ ≥ 0, we have

D(µ) ≤ J(u†) + µ(JR(u†)− ε̄)
=⇒ D(µ)− µ(JR(u†)− ε̄) ≤ J(u†) <∞.

Next, suppose that, for every µ ≥ 0, JR(u∗(µ)) − ε̄ ≥ 0.
Because J(u∗(·)) is increasing on R+, it must be true that

J(u†)≥ sup
µ≥0

D(µ)−µ(JR(u†)− ε̄)

= sup
µ≥0

J(u∗(µ))+µ(JR(u∗(µ))− ε̄)−µ(JR(u†)− ε̄)

=∞,

which contradicts the fact that J(u†) < ∞. Therefore, there
must exist µ† ≥ 0, such that JR(u∗(µ†))−ε̄ < 0. But JR(u∗(·))
is decreasing on R+ and, consequently, it must be the case
that µ∗ ∈ [0, µ†). The proof is now complete.

PROOF OF THEOREM 5

The quadratic and linear penalties Qµ,t, m3,t, the errors δt, εt,
and all parameters Vt, ξt, dt,Kt, lt, Pt, ζt, ct are a function of
the stochastic dynamics of the system. To see why this holds,
define the stochastic part of the system as:

xsk , xk −
k∑
i=0

BAiuk−i = Axsk−1 + wk, y
s
k , Cxsk + vk,
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with xs0 = x0. We can define the deterministic part of the
system as:

xdt ,
k∑
i=0

BAiuk−i = xt − xst .

Since the deterministic part xdt ∈ Ft−1 is measurable with
respect to the current information:

E(xdt |Ft−1) = xdt .

As a result,

δt = xst − E(xst |Ft−1), et = E(xst |Ft)− E(xst |Ft−1).

Let now u1, u2 ∈ U0 be two arbitrary policies. Denote by xs,1t ,
xs,2t the respective stochastic component of the state. Then for
any sample of the probability space (everywhere):

xs,1t = xs,2t .

In other words, the stochastic states are point-wise independent
of the inputs. The same holds for the quadratic and linear
penalties Qµ,t, m3,t, the errors δt, εt, and all parameters
Vt, ξt, dt,Kt, lt, Pt, ζt, ct. Then, this recursively implies that
pointwise everywhere:

∂Vt
∂ut

= 0,
∂ξt
∂ut

= 0,
∂dt
∂ut

= 0.

Meanwhile, since all moments of wt exist and R � 0 is strictly
positive definite, all moments of Vt, ξt, dt,Kt, lt, Pt, ζt, ct also
exist (follows from Hölder’s inequality). In particular, all
moments of Kt, lt exist.

By using dynamic programming and assuming (temporarily)
that involved measurability issues are resolved [52], we have,
for every k ≤ N − 1, the recursive optimality condition (i.e.,
the Bellman equation)

L∗k(zk, µ) = inf
uk

gk+1(zk, uk, µ) + E
{

L∗k+1(zk+1, µ)|Fk
}
.

The base case is obvious since L∗N (zN , µ) = 0. Assume it is
true for k = t+ 1, we will show that the same holds for k = t.
Writing x̂t+1|t+1 = x̂t+1 + et+1, we have:

E
{

L∗t+1(zt+1, µ)|Ft
}

= E
{
x̂′t+1|t+1Pt+1x̂

′
t+1|t+1 + 2ζ ′t+1x̂t+1|t+1 + ct+1|Ft

}
= x̂′t+1E(Pt+1|Ft)x̂t+1 + 2E(e′t+1Pt+1 + ζ ′t+1|Ft)x̂t+1

+ E(ct+1|Ft) + E(e′t+1Pt+1et+1|Ft) + 2E(ζ ′t+1et+1|Ft).

As a result, we obtain the following quadratic form

gt(zt, ut, µ) + E
{

L∗t+1(zt+1, µ)|Ft
}

= x̂′t+1Vtx̂t+1 + u′tRut + 2ξ′tx̂t+1 + dt.
(36)

Based on the above we can also verify that all measurability
issues are now resolved in a recursive way, retrospectively.
Recall that x̂t+1 = Ax̂t|t + But + w̄. Since all Vt, ξt, dt are
independent of ut pointwise, the unique stationary point of the
above convex quadratic form is given by:

u∗t = Ktx̂t|t + lt.

Plugging the optimal input (29) into (36) gives the optimal
cost-to-go (20). In detail:{

Ax̂t|t +Bu∗t + w̄
}′
Vt
{
Ax̂t|t +Bu∗t + w̄

}
+ (u∗t )

′Ru∗t + 2ξ′t
{
Ax̂t|t +Bu∗t + w̄

}
+ dt

= x̂′t|tPtx̂t|t + 2 {Blt + w̄}′ Vt(A+BKt)x̂t|t

+ {Blt + w̄}′ Vt {Blt + w̄}+ 2l′tRKtx̂t|t + l′tRlt

+ 2ξ′t(A+BKt)x̂t|t + 2ξ′t(Blt + w̄) + dt
i)
= x̂′t|tPtx̂t|t + 2w̄′Vt(A+BKt)x̂t|t

+ 2ξ′t(A+BKt)x̂t|t + {Blt + w̄}′ Vt {Blt + w̄}
+ l′tRlt + 2ξ′t(Blt + w̄) + dt
ii)
= x̂′t|tPtx̂t|t + 2w̄′Vt(A+BKt)x̂t|t + 2ξ′t(A+BKt)x̂t|t

+ w̄′Vtw̄ − l′t(B′VtB +R)lt + 2ξ′tw̄ + dt

where the cancellations in i) follow from the identity:

(B′VtB +R)Kt = −B′VtA,
and ii) follows from:

2ξ′Blt + 2w̄′VtBlt = −2l′t(B
′VtB +R)lt.

Recursively, we can verify that the optimal control has finite
fourth moments. In fact, all higher-order moments of u∗t exist.
This follows from the fact that all moments of Kt, lt, wt exist.

PROOF OF PROPOSITION 3
We will only sketch the proof of continuity. The proof of

the recursive expressions is omitted since it is similar to the
proof of Theorem 5. Let µs ≥ 0, s = 1, 2, . . . be a sequence
such that µs → µ and let ‖µ‖∞ , sups≥1 µs. We will
use Dominated Convergence Theorem (DCT) for conditional
expectation to prove that JR(u∗(µs)) converges to JR(u∗(µ)).
To emphasize the dependence on µs, we will use the notation
Vt(µs), . . . , ct(µs) and Θt(µs), . . . , gt(µs) for the quantities
appearing in Theorem 5 and in the statement.

We will show that the terms VN−2(µs), HN−2(µs) all
converge almost surely to their respective limits. The proof for
the remaining terms is similar. The idea is to show that KN−1
is dominated by a function which is independent of the index
s. Note that ‖VN−1(µs)‖2 ≤ ‖µ‖∞‖WN−1‖2‖Q‖22 + ‖Q‖2.
Since R is invertible, we obtain:

‖KN−1(µs)‖2 ≤ O(‖WN−1‖2 + 1).

We interpret the notation α = O(β) as follows: there is a
deterministic constant C = C(‖µ‖∞) such that α ≤ Cβ almost
surely. As a result, we also obtain:

‖PN−1(µs)‖2, ‖ΘN−1(µs)‖2 ≤ O(‖WN−1‖32 + 1).

Note that since all moments of δN exist (follows from As-
sumption 3), the term ‖WN−1‖3 has finite expectation. Mean-
while, almost surely PN−1(µs) → PN−1(µ), ΘN−1(µs) →
ΘN−1(µ). Hence, by the conditional DCT, we also have:

E(PN−1(µs)|FN−2)→ E(PN−1(µ)|FN−2), a.s.
E(ΘN−1(µs)|FN−2)→ E(ΘN−1(µ)|FN−2), a.s.
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This proves that VN−2(µs), HN−2(µs) converge to
VN−2(µ), HN−2(µ) almost surely. Meanwhile, they remain
dominated by:

‖VN−2(µs)‖2, ‖HN−2(µs)‖2 ≤
O(E(‖WN−1‖32|FN−2) + ‖WN−2‖2 + 1).

Proceeding similarly, by successive use of DCT and the
existence of all moments of δt, we can show that all matrices
Vt(µs), Pt(µs), Ht(µs), Θt(µs) and their (conditional) means
converge to the respective limits almost surely. We omit the
details to avoid repetition. The same will hold for terms ηt(µs)
and γ0(µs) and their (conditional) means.

PROOF OF THEOREM 8
For convenience, we drop the index µ from Qµ,t. Note that

from standard Kalman filter theory [48][Ch. 4.4], the covariance
Wt converges exponentially fast to W∞ as t0 goes to −∞.
Moreover, since Wt0 = 0, the sequence Wt is increasing with
respect to the positive semi-definite cone [48][Ch. 4.4]. Since
Q∞ � Q, we also obtain that (A,Q

1/2
∞ ) is detectable. Hence,

the stabilizing solution V is well-defined and A+BK is stable.
We will only prove (35). The remaining results follow using

similar arguments. First we state a lemma that generalizes
Problem 4.5, Section 4 in [48].

Lemma 3. Let Vt, V̄t satisfy the Riccati Difference Equations

Vt−1 = (A+BKt)
′Vt(A+BKt) +Qt−1 +K ′tRKt

V̄t−1 = (A+BLt)
′V̄t(A+BLt) + Q̄t−1 + L′tRLt,

with gains

Kt = −(B′VtB +R)−1B′VtA

Lt = −(B′V̄tB +R)−1B′V̄tA,

Then, their difference satisfies the identity:

Vt−1− V̄t−1 = (A+BLt)
′(Vt− V̄t)(A+BKt)+Qt−1−Q̄t−1

Proof. Omitted; similar to the proof of Problem 4.5 in [48].

For N − 1 ≥ k1 > k2, define the products:

Ψk1:k2(N) , (A+BKk1)× · · · × (A+BKk2+1), (37)

with Ψk1:k1(N) = I . Applying Lemma 3 to Vt and V , we get:

Vt − V = Ā′(Vt+1 − V )(A+BKt+1) +Qt −Q∞.
Repeating multiple times, we obtain a fundamental identity:

Vt − V = (Ā′)N−t−1(QN−1 − V )ΨN−1:t(N)

+

N−t−2∑
k=0

(Ā′)k(Qt+k −Q∞)Ψt+k:t(N).
(38)

This almost gives us the result. What remains is to show
that Ψt+k:t(N) are uniformly bounded over all k, N, t. This
follows from the following lemma.

Lemma 4. Let Q be positive definite. For any k1 ≥ k2 ≥ t0,
N ≥ t0 such that N − 1 ≥ k1:

‖Ψk1:k2(N)‖2 ≤
√
σ−1min(Q)‖V ‖2.

Proof. It is sufficient to show that:

V � Ψk1:k2(N)′QΨk1:k2(N).

Then, we can get the result from the bound

‖V ‖2 ≥ σmin(Q)‖Ψk1:k2(N)‖22.
The proof will proceed in two steps. First, we show that for

any k, N such that k ≥ t0, N − 1 ≥ k the stabilizing solution
V overbounds Vk. Second, we use this property to upper-bound
the products Ψk1:k2(N).

Step 1. We show that Vk � V via induction. Recall that
the sequence Wt is increasing, which implies that Qt � Q∞,
for any t ≥ t0. For the base case, we have VN−1 = QN−1 �
Q∞ � V . Assume that Vt � V . Define the operator:

g(F ) , A′FA+Q∞ −A′FB(B′FB +R)−1B′FA.

Then, since Qt−1 � Q∞, we have:

Vt−1 � g(Vt)
i)

� g(V ) = V.

The second inequality i) follows from the fact (e.g. see pages
79-80 Ch. 4.4 of [48]) that g(·) preserves positive semi-definite
order, i.e. if F1 � F2, then g(F1) � g(F2). This completes
the proof of the first step.

Step 2. We will show that:

Vk2 � Ψk1:k2(N)′QΨk1:k2(N).

Then, using the result of step 1 proves the desired inequality.
From the definition of the Riccati Difference Equation:

Vk2 � (A+BKk2+1)′Vk2+1(A+BKk2+1)

� · · · � Ψk1:k2(N)′Vk1Ψk1:k2(N)′.

To complete the proof, note that Vk1 � Qk1 � Q for any
k1 ≤ N − 1.

Now choose:

C1 = ‖V ‖3/22

√
σ−1min(Q)

C̃2 =

√
σ−1min(Q)‖V ‖2

∞∑
k=0

‖Āk‖2

Based on the above lemma, we obtain:

‖Vt − V ‖2 ≤ C1‖ĀN−t−1‖2 + C̃2 sup
k≥t
‖Qk −Q∞‖2.

Since the sequence Wt is increasing, we can replace the
supremum by

sup
k≥t
‖Qk −Q∞‖2 = ‖Qt −Q∞‖2.

Finally, since:

Qt −Q∞ = µQ(Wt −W∞)Q,

if suffices to select C2 = µC̃2‖Q‖2.
Note that if Q is singular, then the result of Lemma 4 no

longer applies. Instead we could bound the products V 1/2Ψ(k1 :
k2)(N). A way to do this is to use N − k1 large enough in
the proof of step 2, so that Vk1 has the same range space as
V . To avoid technicalities, we defer the proof for future work.
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