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Abstract
We present Free-MESSAGEp, the first zeroth-order algorithm for convex mean-semideviation-

based risk-aware learning, which is also the first three-level zeroth-order compositional stochastic
optimization algorithm, whatsoever. Using a non-trivial extension of Nesterov’s classical results
on Gaussian smoothing, we develop the Free-MESSAGEp algorithm from first principles, and
show that it essentially solves a smoothed surrogate to the original problem, the former being
a uniform approximation of the latter, in a useful, convenient sense. We then present a com-
plete analysis of the Free-MESSAGEp algorithm, which establishes convergence in a user-tunable
neighborhood of the optimal solutions of the original problem, as well as explicit convergence
rates for both convex and strongly convex costs. Orderwise, and for fixed problem parameters,
our results demonstrate no sacrifice in convergence speed compared to existing first-order meth-
ods, while striking a certain balance among the condition of the problem, its dimensionality, as
well as the accuracy of the obtained results, naturally extending previous results in zeroth-order
risk-neutral learning.

1 Introduction

Statistical machine learning traditionally deals with the determination and characterization of op-
timal decision rules minimizing an expected cost criterion, quantifying, for instance, regression or
misclassification error in relevant applications, on the basis of available training data [16, 19, 42].
Still, the expected cost paradigm is not appropriate, say, in applications involving highly dispersive
disturbances, such as heavy tailed, skewed or multimodal noise, or in applications whose purpose
is to imitate uncertain human behavior. In the first case, merely optimizing the expected cost is
often statistically meaningless, since the resulting optimal prediction errors might exhibit unstable
or erratic behavior, even with a small expected value. In the second case, as aptly put in [7], the fact
is that human decision makers are inherently risk-averse, because they prefer consistent sequences
of predictions instead of highly variable ones, even if the latter contain slightly better predictions.

Such situations motivate developments in the area of risk-aware statistical learning, in which
expectation in the learning objective is replaced by more general functionals, called risk measures
[38], whose purpose is to effectively quantify the statistical variability of the cost function considered,
in addition to mean performance. Indeed, risk-awareness in learning and optimization has already
been explored under various problem settings [1, 5, 7, 17, 20, 21, 22, 26, 29, 36, 40, 43, 46, 48], and
has proved useful in many important applications, as well [5, 6, 23, 25, 32, 37].

In this paper, we study risk-aware learning problems in which expectation is generalized to
the class of mean-semideviation risk measures developed in [22]. Specifically, given any complete
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probability space (Ω,F ,P), and a random element W : Ω → RM on (Ω,F ) modeling abstractly
all the uncertainty involved in the learning task, we consider stochastic programs of the form

inf
x∈X

{
φ (x) , E {F (x,W )}+ c ‖R (F (x,W )− E {F (x,W )})‖Lp

}
, (1)

for c ∈ [0, 1] and order p ∈ [1, 2], and whereis Borel in its second argument and convex in its
first, F (·,W ) ∈ Lp (Ω,F ,P;R) , Zp, the set X ⊆ RN is nonempty, closed and convex, and
R : R → R is a risk regularizer, or risk profile [22], that is, any convex, nonnegative, nondecreasing
and nonexpansive map. Hereafter, (1) will be called the base problem.

The objective φ evaluates the mean-semideviation risk measure ρ (·) , E {·}+c‖R ((·)− E {·})‖Lp
at F (·,W ), i.e., φ (·) ≡ ρ (F (·,W )) [22]. The functional ρ generalizes the well-known mean-upper-
semideviation [38], which is recovered by choosing R (·) ≡ (·)+ , max {·, 0}, and is one of the most
popular risk-measures in theory and practice [2, 9, 13, 24, 30, 31, 33, 34]. For c ∈ [0, 1], ρ is a convex
risk measure [22], ([38], Section 6) on Zp; thus, φ in (1) is convex on RN , as well.

In (1), the expected cost, called the risk-neutral part of the objective, is penalized by a semide-
viation term, called the risk-averse part of the objective. The latter explicitly quantifies, for each
feasible decision, the deviation of the cost relative to its expectation, interpreted as a standardized
statistical benchmark. The risk profile R acts on this central deviation as a weighting function, and
its purpose is to reflect the particular risk preferences of the learner. As partially mentioned above,
typical choices for R include the hockey stick (·)++η, also known as a Rectified Linear Unit (ReLU),
as well as its smooth approximations (1/t) log (1 + exp (t (·))) + η, with t > 0, and η ≥ 0. For a
constructive characterization of mean-semideviation risk-measures, the reader is referred to [22].

Stochastic subgradient-based recursive optimization of mean-semideviation risk measures was
recently considered in [22], where the so-called MESSAGEp algorithm was proposed and analyzed
for solving (1). The work of [22] is based on the fact that (1) can be expressed in nested form (see
Section 2), and builds on previous results on general compositional stochastic optimization [44, 45].

In this work, we are interested in solving (1) in a zeroth-order setting, using exclusively cost
function evaluations, in absence of gradient information. Zeroth-order methods have a long history
in both deterministic and risk-neutral stochastic optimization [4, 11, 14, 15, 18, 27, 39, 47], and are of
particular interest in applications where gradient information is very difficult, or even impossible to
obtain, such as training of deep neural networks [8, 41], nonsmooth optimization [28], clinical trials
[7], and, more generally, machine learning in the field, simulation-based optimization [10, 39], online
auctions and search engines [11], and distributed learning [47]. Still, to the best of our knowledge,
the development of zeroth-order methods for possibly nonsmooth risk-aware problems such as (1)
and, more generally, compositional stochastic optimization problems, is completely unexplored. Our
contributions are as follows:

• We present Free-MESSAGEp, the first zeroth-order algorithm for solving (1) within a user-
specified accuracy, which is also the first three-level zeroth-order compositional stochastic op-
timization algorithm, whatsoever. The Free-MESSAGEp algorithm requires exactly four cost
function evaluations per iteration, and is based on finite difference-based inexact gradient ap-
proximation, in the spirit of [14, 15, 28]. Using a non-trivial extension of Nesterov’s classical re-
sults on Gaussian smoothing [28], which we present and discuss, we develop the Free-MESSAGEp

algorithm from first principles, and we show that it exactly solves a smoothed surrogate to the
original problem, the former being a uniform approximation of the latter.

• We present a complete analysis of the Free-MESSAGEp algorithm, establishing path convergence
in a user-specified neighborhood of the optimal solutions of (1), as well as explicit convergence
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rates for both convex and strongly convex costs. Orderwise, and for fixed problem parameters,
our results demonstrate no sacrifice in convergence speed as compared to the fully gradient-based
MESSAGEp algorithm [22], and explicitly quantify the benefits of strong convexity on problem
conditioning, reflected on the derived rates. Further, we develop explicit sample complexity
bounds which quantify the inherent dependence of the performance of Free-MESSAGEp on both
the size of the limiting neighborhood and the decision dimension, N , and naturally extend fun-
damental prior work on zeroth-order risk-neutral optimization [28].

2 Basic Properties of the Base Problem

First, it will be convenient to express φ in compositional (or nested) form, as in [22]. By defining
expectation functions % : R+ → R, g : RN × R→ R+, h : RN → RN × R and s : RN → R as

% (x), x1/p, g (x, y),E {(R (F (x,W )− y))p} and h (x), [x | s (x),E {F (x,W )}], (2)

respectively, and provided that the involved quantities are well-defined, φ may be reexpressed as

φ (x) ≡ s (x) + c% (g (h (x))) , ∀x ∈ X . (3)

Further, under appropriate conditions, differentiability of φ on X may be guaranteed as follows.

Lemma 1. (Differentiability of φ [22]) Let s and g be differentiable on X and GraphX (s),
respectively, and let R : R → R be such that {x ∈ R |R (x) ≡ 0} 6= R. Also, if p ∈ (1, 2], and
with κR, sup {x ∈ R |R (x) ≡ 0} ∈ [−∞,∞), suppose that P (F (x,W )− s (x) ≤ κR) < 1, for all
x ∈ X . Then φ is differentiable on X , and its gradient ∇φ : RN → RN may be expressed as

∇φ (x) ≡ ∇s (x) + c∇h (x)∇g (h (x))∇% (g (h (x))) , ∀x ∈ X . (4)

Lemma 1 states carefully the obvious: It verifies the composition rule for deriving the gradient
of φ, properly handling the root %. Also, Lemma 1 is not concerned with actually determining ∇h
and ∇g; it just establishes the existence and intrinsically compositional structure of ∇φ.

3 Gaussian Smoothing and Its Properties

Let f : RN → R be Borel. Also, for any RN -valued random element U ∼ N (0, IN ), and for µ ≥ 0,
consider another Borel function fµ : RN → R, defined as fµ (·) , E {f ((·) + µU)}, provided that the
involved integral is well-defined and finite for all x ∈ RN . In many cases, the smoothed function fµ
may be shown to be differentiable on RN , even if f is not. A wide class of functions satisfying such
a property (under some qualification) is that of Shift-Lipschitz functions, or SLipschitz functions,
for short, which are associated with two additional types of functions, which we call divergences and
normal remainders, as introduced below.

Definition 1. (Divergences) A function D : RN → R is called a stationary divergence, or simply
a divergence, if and only if D (u) ≥ 0, for all u ∈ RN , and D (u) ≡ 0 ⇐⇒ u ≡ 0.

Definition 2. (Normal Remainders) A function T : RNo×RN → R is called a normal remainder
on F ⊆ RNo if and only if, for U ∼ N (0, IN ), E {T (x, µU)} ≡ 0, for all x ∈ F and µ ≥ 0.
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Definition 3. (Shift-Lipschitz Class) A function f : RN → R is called Shift-Lipschitz with
parameter L <∞, relative to a divergence D : RN → R and a normal remainder T : RN ×RN → R,
or (L,D,T)-SLipschitz for short, on a subset F ⊆ RN , if and only if, for every u ∈ RN ,

sup
x∈F
|f (x + u)− f (x)− T (x,u)| ≤ LD (u) . (5)

Apparently, every (real-valued) L-Lipschitz function on RN , with respect to some norm ‖·‖∗ :

RN → R+, is (L, ‖·‖∗ , 0)-SLipschitz on RN . Similarly, every L-smooth function f on RN is(
L/2, ‖·‖22 , (∇f(•))T (·)

)
-SLipschitz on RN ; indeed, f has L-Lipschitz gradient if and only if∣∣f (x1)− f (x2)− (∇f (x2))

T (x1 − x2)
∣∣ ≤ L ‖x1 − x2‖

2
2 /2, ∀ (x1,x2) ∈ RN × RN . (6)

But there are many non-Lipschitz or non-smooth functions, which can be shown to be SLipschitz,
at least on some proper subset F ⊂ RN , but where still u ∈ RN (see Definition 3). This is the main
reason for working with the SLipschitz class and its extensions, as it provides substantially increased
degrees of freedom regarding the choice of the cost function in (1). For two concrete toy examples
of non-Lipschitz, non-smooth, but SLipschitz functions, see Appendix A.

We now formulate the next central result, providing several useful properties of fµ. Simpler
versions of this result have been presented earlier in the seminal paper [28], however under more
restrictive conditions on f .

Lemma 2. (Properties of fµ) Suppose that, for every µ > 0 and for every 0 ≤ B <∞,

E {exp (‖µU‖2B) ‖µU‖2 |f (µU)|} <∞, U ∼ N (0, IN ) . (7)

Then, for any subset F ⊆ RN , the following statements are true:

• For every µ ≥ 0, fµ is well-defined and finite on F . Further, if, for some divergence D : RN → R
and normal remainder T : RN × RN → RN , f is (L,D,T)-SLipschitz on F ,

sup
x∈F
|fµ (x)− f (x)| ≤ LE {D (µU)} . (8)

• If f is convex on RN , so is fµ, and fµ overestimates f everywhere on F .

• For every µ > 0, fµ is differentiable on F , and its gradient ∇fµ : RN → RN may be written as

∇fµ (x) ≡ E
{
f (x + µU)− f (x)

µ
U

}
, ∀x ∈ F , (9)

where integration is in the sense of Lebesgue. Further, if f is (L,D,T)-SLipschitz on F , then

E

{∥∥∥∥f (x + µU)− f (x)

µ
U

∥∥∥∥2
2

}
≤ 1

µ2
E
{(
LD (µU) + |T (x, µU)|

)2 ‖U‖22}, ∀x ∈ F . (10)

Proof of Lemma 2. See Appendix B. �

Driven by Lemma 2, we also introduce a notion of effectiveness of a divergence-remainder pair,
or
(
D,T

)
-pair, for short, which quantifies the accuracy of Gaussian smoothing, in general terms.
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Definition 4. (Effectiveness of Gaussian Smoothing) Let U ∼ N (0, IN ) and fix q ≥ 2. Then:

• A
(
D,T

)
-pair is called q-effective on F ⊆ RN if and only if there are Borel functions d : RN → R

and tq : F × RN → R, such that, for some ε ≥ 0, µo ∈ (0,∞], and for all µ ≤ µo,

D (µu) ≤ µ1+εd (u) and ‖T ([x,Q], µu)‖Lq ≤ µtq (x,u) , ∀ (x,u) ∈ F × RN , (11)

where Q is F -measurable, d (U) ∈ Zq and tq (·,U) ∈ Zq.

• A
(
D,T

)
-pair is called q-stable on F if and only if it is q-effective on F , with d (U) ‖U‖2/q2 ∈ Zq

and tq (·,U) ‖U‖2/q2 ∈ Zq, for all q ∈ [2, q].

• A
(
D,T

)
-pair is called uniformly qo-effective (stable) on F if and only if it is q-effective (sta-

ble) on F and, further, it holds that supx∈F ‖tq(x,U)‖Lq<∞ (plus supx∈F ‖tq(x,U)‖U‖2/q2 ‖Lq<
∞), for all q ∈ [2, q].

In any case of the above, if ε > 0, then D is called an efficient divergence.

In the context of Lemma 2, effectiveness of a
(
D,T

)
-pair implies that E {D (µU)} in (8) decreases

at least linearly in µ as µ → 0, whereas stability implies that the right of (10) stays bounded in µ
as µ→ 0. If the

(
D,T

)
-pair is uniformly 2-stable, then the right-hand side of (9) is also bounded in

x. Further, if D is an efficient divergence, then E {D (µU)} decreases superlinearly in µ as µ → 0.
The additional conditions imposed by Definition 4 will be relevant shortly.

Typical examples of effective/stable
(
D,T

)
-pairs are the one where D (·) ≡ ‖·‖2 and T ≡ 0,

associated with the Lipschitz class on RN , and that where D (·) ≡ ‖·‖22 and T ([•, ?], ·) ≡ T (•, ·) ≡
(∇f(•))T (·) (see above), associated with the smooth class on RN . For a slightly more elaborate
example, see Appendix C.

4 The Free-MESSAGEp Algorithm

The basic idea behind the Free-MESSAGEp algorithm is to carefully exploit Lemma 2, and replace
the gradients involved in expression (4) of Lemma 1 by appropriate smoothed versions, which may
be evaluated by exploiting only zeroth-order information. To this end, for µ ≥ 0, define functions
gµ : RN × R→ R+ and hµ : RN → RN × R and sµ : RN → R as

gµ (x, y) , E {(R (F (x + µU ,W )− (y + µU)))p} , and (12)

hµ (x) ,
[
x | sµ (x) , E {F (x + µU ,W )}

]
, (13)

where
[
UT U

]T ∼ N (0, IN+1),
[
UT U

]T andW are mutually independent, and where, temporarily,
we implicitly and arbitrarily assume that the involved expectations are well-defined and finite. Then,
for µ > 0, we may consider the µ-smoothed quasi-gradient of φ

∇̂µφ (x) ≡ ∇sµ (x) + c∇hµ (x)∇gµ(hµ (x))∇%(gµ(hµ (x))), ∀x ∈ X , (14)

again provided that everything is well-defined and finite. If, further, the conditions of Lemma 2 are
fulfilled, and with Fubini’s permission, it must be true that, for every x ∈ X ,

∇hµ (x) ≡
[
IN
∣∣∇sµ (x)

]
=

[
IN

∣∣∣∣E{F (x + µU ,W )− F (x,W )

µ
U

}]
, (15)
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Algorithm 1 Free-MESSAGEp

Input: Initial points x0 ∈ X , y0 ∈ Y, z0 ∈ Z, stepsizes {αn}n, {βn}n, {γn}n, IID sequences
{W n

1}n, {W
n
2}n, penalty coefficient c ∈ [0, 1], smoothing parameter µ.

Output: Sequence {xn}n∈N.
1: for n = 0, 1, 2, . . . do
2: Sample Un+1

1 ∼ N (0, IN ), and evaluate F
(
xn + µUn+1

1 ,W n+1
1

)
.

3: Update (First SA Level):

yn+1 = ΠY
{

(1− βn) yn + βnF
(
xn + µUn+1

1 ,W n+1
1

)}
4: Sample

[(
Un+1

2

)T
Un+1]T ∼ N (0, IN+1), and evaluate F

(
xn + µUn+1

2 ,W n+1
2

)
.

5: Update (Second SA Level):

zn+1=

{
1, if p= 1

ΠZ
{

(1−γn) zn+γn
(
R
(
F
(
xn+µUn+1

2 ,W n+1
2

)
−µUn+1−yn

))p}
, if p> 1

6: Evaluate F
(
xn,W n+1

1

)
and F

(
xn,W n+1

2

)
.

7: Define auxiliary variables:

∆1 =
F
(
xn + µUn+1

1 ,W n+1
1

)
− F

(
xn,W n+1

1

)
µ

∆2 =

(
R
(
F
(
xn+µUn+1

2 ,W n+1
2

)
−µUn+1−yn

))p−(R(F (xn,W n+1
2

)
−yn

))p
µ

∆ = (zn)
(1−p)/p (

Un+1
2 + ∆1U

n+1
1 Un+1)∆2

8: Update (Third SA Level):

xn+1 = ΠX
{
xn − αn

(
∆1U

n+1
1 + c∆

)}
9: end for

and, for every (x, y) ∈ GraphX (sµ),

∇gµ (x, y) = E
{

(R (F (x + µU ,W )− (y + µU)))p − (R (F (x,W )− y))p

µ

[
U
U

]}
. (16)

The quasi-gradient ∇̂µφ suggests a compositional (nested) Stochastic Approximation (SA) scheme
for approximating a stochastic gradient for φ. Similarly to [22, 44, 45], this scheme consists of three
SA levels and presumes the existence of two mutually independent, Independent and Identically
Distributed (IID) information streams, {W n

1}n, {W
n
2}n, accessible by a Zeroth-Order Sampling

Oracle (ZOSO) for F . We also assume the existence of a Gaussian sampler, generating independent
standard Gaussian elements on RN+1, mutually independently of {W n

1}n and {W n
2}n.

The Free-MESSAGEp algorithm is presented in Algorithm 1, where the updates of the first and
second SA levels are clearly specified. For the third SA level, given F

(
xn,W n+1

1

)
and F

(
xn,W n+1

2

)
,
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and upon defining finite differences ∆n+1
1 : RN × Ω→ R and ∆n+1

2 : RN × R× Ω→ R as

∆n+1
1,µ (xn),

F
(
xn+µUn+1

1 ,W n+1
1

)
− F

(
xn,W n+1

1

)
µ

and (17)

∆n+1
2,µ,p(x

n, yn),

(
R
(
F
(
xn+µUn+1

2 ,W n+1
2

)
−µUn+1−yn

))p−(R(F (xn,W n+1
2

)
−yn

))p
µ

, (18)

a stochastic quasi-gradient ∇̂n+1
µ φ : RN × R× R× Ω→ R is formed as (compare with (14))

∇̂n+1
µ φ(xn, yn, zn),∆n+1

1,µ (xn)Un+1
1 +c(zn)

1−p
p

[
IN

∣∣∣∆n+1
1,µ (xn)Un+1

1

]
∆n+1

2,µ,p (xn, yn)

[
Un+1

2

Un+1

]
≡∆n+1

1,µ (xn)Un+1
1 +c(zn)

1−p
p
(
Un+1

2 +∆n+1
1,µ (xn)Un+1

1 Un+1)∆n+1
2,µ,p (xn, yn)

,∆n+1
1,µ (xn)Un+1

1 +c∆n+1
µ,p (xn, yn, zn) . (19)

Then, the current estimate xn is finally updated via a projected quasi-gradient step as

xn+1 ≡ ΠX
{
xn−αn∇̂

n+1
µ φ (xn, yn, zn)

}
. (20)

5 µ-Smoothed Convex Risk-Averse Surrogates

So far, most mathematical arguments presented in Section 4 have been imprecise, since we discussed
neither well-definiteness of gµ, hµ and ∇̂µφ, nor fulfillment of the conditions of Lemma 2. Here, we
resolve all technicalities, and also reveal the actual usefulness of ∇̂µφ in solving problem (1). Our
discussion will revolve around the perturbed cost F ((·) + µU ,W ) − µU ∈ Zp, ranked via the risk
measure ρ. Accordingly, we consider the well-defined, finite-valued function φµ : RN → R as

φµ (x) , ρ ([F (x + µU ,W )− µU ]) , x ∈ X . (21)

We also impose regularity conditions on the cost F and risk profile R, as follows.

Assumption 1. F and R satisfy the following conditions:

C0 The functions s and g obey (7).

C1 There is G <∞, and a
(
D,T

)
-pair, such that

sup
x∈X
‖F (x + u,W )− F (x,W )− T ([x,W ],u)‖L2 ≤ GD (u) , ∀u ∈ RN .

C2 There is V <∞, such that supx∈X ‖F (x,W )‖L2 ≤ V .

C3 The associated
(
D,T

)
-pair is uniformly 2-effective on X , and we define Di , ‖d (U)‖Li , for

i ∈ {1, 2}, and T2 , supx∈X ‖tq (x,U)‖L2 <∞ (where U ∼ N (0, IN )).

C4 If p ∈ (1, 2], there is η > 0, such that infx∈RR (x) ≥ η. Otherwise, η ≡ 0.

Under Assumption 1 and exploiting Lemma 2, the next result establishes that φµ qualifies as a
surrogate to the base problem (1). Hereafter, let X oµ , arg minx∈Xφµ (x).
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Lemma 3. (Smoothed Convex Surrogates) Suppose that Assumption 1 is in effect. Then, for
every 0 ≤ µ ≤ µo, φµ is convex and differentiable everywhere on X , ∇φµ ≡ ∇̂µφ, where hµ and gµ
are well-defined, the gradients ∇hµ and ∇gµ are given by (15) and (16), respectively, and

sup
x∈X
|φµ (x)− φ (x)| ≤ µ1+εGD1 + cC (µ) (µ1+εG(D1 +D2) + µ(T2 + 1)), (22)

with
C (µ),1{p≡1}+ η−p/2

(
R(0) + 2V +µ1+εG(D1 +D2) +µ(T2 + 1)

)p/2
1{p∈(1,2]}. (23)

Additionally, if X oµ 6= ∅, then, for every xo ∈ X oµ and (x1,x2) ∈ X × X ,

φ (x1)− φ (x2) ≤ φµ (x1)− φµ (xo) + 2 sup
x∈X
|φµ (x)− φ (x)|

≤ φµ (x1)− φµ (xo) + Σoµ(µε + c), (24)

where Σo , 2 max{GD1, C (µ) (µεG(D1 +D2) + (T2 + 1))}.

Lemma 3 suggests that φµ should be useful as a proxy for studying Free-MESSAGEp as a
method to solve (1). Specifically, inequality (24) is of key importance to the convergence analysis
of the Free-MESSAGEp algorithm, discussed later in Section 6. Lemma 3 will be proved in several
stages, as follows.

5.1 Proof of Lemma 3

First, an immediate but very useful consequence of Assumption 1 is the following proposition. The
proof is elementary and is omitted.

Proposition 1. (Implied Properties of F (·,W ) I) Suppose that condition C1 of Assumption 1
is in effect. Then the function T (•, ·) , E{T ([•,W ], ·)} is a normal remainder on X . Further, it
is true that, for every u ∈ RN ,

sup
x∈X
|s (x + u)−s (x)−T (x,u)|

≤ sup
x∈X

E {|F (x + u,W )−F (x,W )−T ([x,W ],u)|} ≤GD (u) , (25)

In other words, E {F (·,W )} is (G,D,T)-SLipschitz on X , and more. If, additionally, condition C2
is in effect, it is true that

|s (x+u)| ≤E {|F (x+u,W )|} ≤ ‖F (x+u,W )‖L2≤GD (u)+‖T ([x,W ],u)‖L2 +V, (26)

for every (x,u) ∈ X × RN .

For the rest of this section, and by condition C3, define the set

Y ′ ,
[
−V, µ1+εGD1 + V

]
. (27)

Note that, later in Section 4, we actually set Y ≡ Y ′. Then, leveraging Proposition 1 and Assumption
1, as well as Lemma 2, we have the following result.
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Lemma 4. (Existence & Properties of sµ and gµ) Suppose that Assumption 1 is in effect.
Then, for some ε ≥ 0 and µo ∈ (0,∞] according to Definition 4, the following statements are true:

• For every 0 ≤ µ ≤ µo, sµ is well-defined, finite, convex on X , and

sup
x∈X
|sµ (x)− s (x)| ≤ µ1+εGD1. (28)

Further, sµ (x) ≥ s (x), for every x ∈ X .

• For every 0 < µ ≤ µo, sµ is differentiable everywhere on X , and

∇sµ (x) ≡ E
{
F (x + µU ,W )− F (x,W )

µ
U

}
, (29)

for every x ∈ X . Further,

E

{∥∥∥∥F (x + µU ,W )− F (x,W )

µ
U

∥∥∥∥2
2

}
≤ E

{(
µεGd (U) + t2 (x,U)

)2 ‖U‖22}. (30)

• For every 0 ≤ µ, gµ is well-defined, finite, convex on X × Y ′, and gµ (x, y) ≥ g (x, y), for
every (x, y) ∈ X × Y ′. Further, if µ ≤ µo, then for every (x, y1, y2) ∈ X × Y

′ × Y ′, and every[
uT u

]T ∈ RN+1, g satisfies the Lipschitz-like property

|g (x+µu, y1 +µu)−g (x, y2)|≤ C (µ,x,u)
(
µ1+εGd (u)+µt2 (x,u)+µ|u|+ |y1−y2|

)
, (31)

where

C (µ,x,u),


1, if p≡ 1

pη(p−2)/2[R (0)+2V

+µ1+εGD1 +µ1+εGd (u)+µt2 (x,u)+µ |u|]p/2, if p∈ (1, 2]

. (32)

• For every 0 < µ ≤ µo, gµ is differentiable everywhere on X × Y and, for every (x, y) ∈ X × Y ′,

∇gµ (x, y)≡E
{

(R (F (x + µU ,W )− (y + µU)))p− (R (F (x,W )− y))p

µ

[
U
U

]}
. (33)

Proof of Lemma 4. For the first part of the result, we know from Proposition 1 that the function
s (·) ≡ E {F (·,W )} is (G,D,T)-SLipschitz on X . Then, for 0 ≤ µ ≤ µo, we may call the first part
of Lemma 2, which implies that the function E {s ((·) + µU)} , s′µ (·) is well-defined and finite on
X , and

sup
x∈X
|s′µ (x)− s (x)| ≤ GE {D (µU)} ≤ µ1+εGE {d (U)} . (34)

Additionally, since s is convex on X , so is E {s ((·) + µU)}, and the latter overestimates the former.
Observe, though, that s′µ is by definition constructed as an iterated expectation, first relative to
the distribution of W , and then relative to that of U , and not as an expectation relative to their

9



product measure. Nevertheless, from Proposition 1 and condition C3 we know that, for every
(x,u) ∈ X × RN , ∫

|F (x + µu,w)| PW (dw) ≤ µ1+εGd (u) + µt2 (x,u) + V, (35)

which in turn implies that, for every x ∈ X ,∫ [∫
|F (x + µu,w)| PW (dw)

]
PU (du)≤ µ1+εGE{d (U)}+µE{t2 (x,U)}+V <∞. (36)

Then, by Fubini’s Theorem (Corollary 2.6.5 and Theorem 2.6.6 in [3]), it follows that the function
E {F ((·) + µU ,W )} ≡ sµ (·) is finite on X , and that

s′µ (x) ≡
∫ [∫

F (x + µu,w)PW (dw)

]
PU (du)

≡
∫
F (x + µu,w) [PW × PU ] (d [u,w])

≡ sµ (x) , ∀x ∈ X , (37)

since W and U are statistically independent. A similar procedure may be followed for the second
part of the lemma, concerning the expression for the gradient of sµ. Further, it is true that

E

{∥∥∥∥F (x + µU ,W )− F (x,W )

µ
U

∥∥∥∥2
2

}
≡ 1

µ2
E
{
E
{
|F (x + µU ,W )− F (x,W )|2|U

}
‖U‖22

}
≡ 1

µ2
E
{
E
{
|F (x + µU ,W )− F (x,W )− T ([x,W ], µU) + T ([x,W ], µU)|2|U

}
‖U‖22

}
≤ 1

µ2
E
{(
µ1+εGd (U) + µt2 (x,U)

)2 ‖U‖22 }
≡ E

{(
µεGd (U) + t2 (x,U)

)2 ‖U‖22 }, (38)

which is what we wanted to show.
For the third part, because g is nonnegative, Fubini’s Theorem immediately implies that

E {g (x + µU , y + µU)} ≡ E {(R (F (x + µU ,W )− (y + µU)))p} ≡ gµ (x, y) , (39)

for all (x, y) ∈ X × Y ′, and for every µ ≥ 0, where the involved integrals always exist. Then, since
g satisfies condition (7) of Lemma 2 by assumption (condition C0), it follows that gµ inherits the
respective properties. Next, we show that g is Lipschitz-like, as claimed. Indeed, if p ≡ 1, we have,
for every (x, y1, y2) ∈ X × Y

′ × Y ′ and
[
uT u

]T ∈ RN+1,

|g (x+µu, y1 +µu)−g (x, y2)| ≤ E {|R (F (x+µu,W )− (y1 +µu))−R (F (x,W )−y2)|}
≤ E {|F (x+µu,W )−F (x,W )|}+µ |u|+ |y1−y2|
≤ µ1+εGd (u)+µt2 (x,u)+µ |u|+ |y1−y2| , (40)

10



and we are done. When p ∈ (1, 2], we will exploit another uniform estimate

‖R (F (x+µu,W )−µu−y)‖Lp
≤ ‖R (F (x+µu,W )−µu−y)‖L2
≤ ‖R (0)+ |F (x+µu,W )−µu−y|‖L2
≤ R (0)+ |y|+µ |u|+‖F (x+µu,W )‖L2
≤ R (0)+2V +µ1+εGD1 +µ1+εGd (u)+µt2 (x,u)+µ |u| , (41)

which holds everywhere on X × Y ′ × RN × R. Similarly,

‖R (F (x,W )− y)‖Lp ≤ R (0) + µ1+εGD1 + 2V, (42)

everywhere on X × Y ′. Then, for every (x, y1, y2) ∈ X × Y
′ × Y ′, and for every

[
uT u

]T ∈ RN+1,
we may write (recall Assumption 1)

|g (x + µu, y1 + µu)− g (x, y2)|
≤ E{|(R (F (x + µu,W )− µu− y1))

p − (R (F (x,W )− y2))
p|}

≡ E
{∣∣(R (F (x + µu,W )− µu− y1))

2p/2 − (R (F (x,W )− y2))
2p/2∣∣}

≡ E
{∣∣(R (F (x + µu,W )− µu− y1))

p/2 − (R (F (x2,W )− y2))
p/2∣∣

×
(
(R (F (x + µu,W )− µu− y1))

p/2 + (R (F (x,W )− y2))
p/2)}

≤ pη(p−2)/2

2
E
{
|R (F (x + µu,W )− µu− y1)−R (F (x,W )− y2)|

×
(
(R (F (x + µu,W )− µu− y1))

p/2 + (R (F (x,W )− y2))
p/2)}

≤ pη(p−2)/2

2
E
{
(|F (x + µu,W )− F (x,W )|+ µ |u|+ |y1 − y2|)

×
(
(R (F (x + µu,W )− µu− y1))

p/2 + (R (F (x,W )− y2))
p/2)}

≤ pη(p−2)/2

2

(
‖F (x + µu,W )− F (x,W )‖L2 + µ |u|+ |y1 − y2|

)
×
(
‖(R (F (x + µu,W )− µu− y1))

p/2 ‖L2 + ‖(R (F (x,W )− y2))
p/2 ‖L2

)
≡ pη(p−2)/2

2

(
‖F (x + µu,W )− F (x,W )‖L2 + µ |u|+ |y1 − y2|

)
×
(
‖(R (F (x + µu,W )− µu− y1))‖

p/2
Lp + ‖(R (F (x,W )− y2))‖

p/2
Lp

)
≤ pη(p−2)/2

(
µ1+εGd (u) + µt2 (x,u) + µ |u|+ |y1 − y2|

)
×
[
R (0) + 2V + µ1+εGD1 + µ1+εGd (u) + µt2 (x,u) + µ |u|

]p/2
. (43)

Finally, the last part of Lemma 4 may be verified by another application of Fubini’s Theorem, as in
the first and second part discussed above, or the tower property, and another application of Lemma
2. Enough said. �

We now prove Lemma 3 for p ∈ (1, 2]; the case where p ≡ 1 is similar, albeit simpler. To
start, for 0 ≤ µ ≤ µo, convexity of φµ on X follows from convexity of F ((·) + µU ,W )− µU on X ,
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which may be shown trivially, based on the convexity of F (·,W ). Next, to verify differentiability
of φµ, it suffices to check the sufficient conditions of Lemma 1. Indeed, since, by condition C4,
infx∈RR (x) ≥ η > 0, it is true that κR ≡ −∞ and, thus, for every x ∈ X ,

P (F (x + µU ,W )− µU −E {F (x + µU ,W )− µU} ≤ κR) ≡ 0 < 1. (44)

Then, Lemma 1 implies that φµ is differentiable everywhere on X , and also that ∇φµ (x) ≡ ∇̂µφ (x) ,
for all x ∈ X , which may easily shown by application of the composition rule to φµ, for which it is
true that

φµ (x)≡E {F (x+µU ,W )−µU}+ c ‖R (F (x+µU ,W )−µU−E {F (x+µU ,W )−µU})‖Lp
≡E {F (x+µU ,W )}+ c ‖R (F (x+µU ,W )− (E {F (x+µU ,W )}+µU))‖Lp
≡sµ (x)+ c%(gµ(hµ (x))), ∀x ∈ X . (45)

Now, because of the fact that (see, for instance, Lemma 4)

−V < inf
x∈X

sµ (x) ≤ sup
x∈X

sµ (x) ≤ µ1+εGD1 + V ⇐⇒ sµ (x) ∈ Y ′, ∀x ∈ X , (46)

we may invoke Lemma 4, yielding, for every x ∈ X ,∣∣φµ (x)− φ (x)
∣∣

≤
∣∣sµ (x)− s (x)

∣∣+ c
∣∣%(gµ(hµ (x)))− %(g (h (x)))

∣∣
≤µ1+εGD1 + c

∣∣%(gµ(hµ (x)))− %(g (h (x)))
∣∣

≤µ1+εGD1 + cp−1η1−p|E{g(x+µU , sµ (x)+µU)}−E {g (x, s (x))}|
≤µ1+εGD1 + cp−1η1−pE{|g

(
x+µU , sµ (x)+µU

)
−g (x, s (x))|}

≤µ1+εGD1 + cp−1η1−pE
{
C (µ,x,U) (|sµ (x)−s (x)|+µ1+εGd (U)+µt2 (x,U)+µ|U |)

}
≤µ1+εGD1 + cp−1η1−pE

{
C (µ,x,U) (µ1+εGD1 +µ1+εGd (U)+µt2 (x,U)+µ|U |)

}
≤µ1+εGD1 + cp−1η1−p‖C (µ,x,U)‖L2

∥∥µ1+εGD1 +µ1+εGd (U)+µt2 (x,U)+µ|U |
∥∥
L2

≤µ1+εGD1 + cp−1η1−p‖C (µ,x,U)‖L2(µ1+εGD1 +µ1+εGD2 +µT2 +µ). (47)

Additionally, it is also true that

‖C (µ,x,U)‖L2
≡ pη(p−2)/2

∥∥[R (0)+2V +µ1+εGD1 +µ1+εGd (U)+µt2 (x,U)+µ |u|]p/2
∥∥
L2

≡ pη(p−2)/2
∥∥R (0)+2V +µ1+εGD1 +µ1+εGd (U)+µt2 (x,U)+µ |U |

∥∥p/2
Lp

≤ pη(p−2)/2
(
R (0)+2V +µ1+εGD1 +µ1+εG‖d (U)‖Lp+µ‖t2 (x,U)‖Lp+µ‖U‖Lp

)p/2
≤ pη(p−2)/2

(
R (0)+2V +µ1+εGD1 +µ1+εGD2 +µT2 +µ

)p/2 (48)

Therefore, for every x ∈ X , (47) may be further bounded from above as∣∣φµ (x)− φ (x)
∣∣≤ µ1+εGD1 + cη−p/2

(
R (0) + 2V + µ1+εGD1 + µ1+εGD2 + µT2 + µ

)p/2
12



× (µ1+εGD1 + µ1+εGD2 + µT2 + µ), (49)

and we are done. Finally, if X oµ 6= ∅ and xo ∈ X oµ , and for every (x1,x2) ∈ X × X , we may write

φ (x1)−φ (x2)≡ φ (x1)−φµ (x1)+φµ (x1)−φµ (xo)+φµ (xo)−φµ (x2)+φµ (x2)−φ (x2)

≤ φ (x1)−φµ (x1)+φµ (x1)−φµ (xo)+φµ (x2)−φ (x2)

≤ φµ (x1)−φµ (xo)+2 sup
x∈X
|φµ (x)−φ (x)|, (50)

where we have used the fact that φµ (xo) ≤ φµ (x), for all x ∈ X . �

6 Convergence Analysis

By Lemma 3, it follows that the compositional quasi-gradient ∇̂µφ (see (14)) is actually the gradient
of the function φµ. Therefore, the Free-MESSAGEp algorithm may be legitimately seen as a zeroth-
order method to solve exactly the convex mean-semideviation problem

inf
x∈X

{
φµ (x) ≡ ρ ([F (x + µU ,W )− µU ])

}
, (51)

where µ > 0 (if µ ≡ 0, then φ0 ≡ φ, and the situation is trivial). Lemma 3 explicitly quantifies the
quality of the approximation of φ by φµ, as well. Consequently, it makes sense to first study the
Free-MESSAGEp algorithm as a method for solving the surrogate (51), and then attempt to relate
the obtained results to the original problem, using Lemma 3. Our results follow this path. The
behavior of the Free-MESSAGEp algorithm will be characterized under the following conditions,
extending Assumption 1 of the previous section.

Assumption 2. Assumption 1 is in effect and conditions C1-C3 are strengthened as follows:

C1 There is G <∞, and a
(
D,T

)
-pair, as in condition C1, such that

sup
x∈X
‖F (x + u,W )− F (x,W )− T ([x,W ],u)‖L4−21{p≡1}

≤ GD (u) , ∀u ∈ RN .

C2 There is Vp <∞, such that supx∈X ‖F (x,W )‖L2p ≤ Vp. Thus, V1 ≡ V .

C3 The associated
(
D,T

)
-pair is uniformly (4− 21{p≡1})-stable on X .

Additionally:

C5 The sets Y and Z are chosen as

Y ,
[
−V, µ1+εGD1 + V

]
and Z ,

[
ηp, (R (0) + 2V + µ1+εG(D1 +D2) + µ(T2 + 1))p

)
.

C6 There is L <∞, such that gµ satisfies the marginal smoothness condition

sup
x∈X
‖∇gµ(x, y1)−∇gµ(x, y2)‖2 ≤ L|y1 − y2|, ∀(y1, y2) ∈ Y × Y.

Note that condition C5 of Assumption 2 can be satisfied under various common circumstances, in
particular when g is L-smooth globally on RN ×R. Note, though, that condition C5 is significantly
weaker than demanding L-smoothness of g.
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6.1 Main Implications of Assumption 2

As in the case of Assumption 1, an immediate consequence of Assumption 2 is the following propo-
sition. The proof is omitted.

Proposition 2. (Implied Properties of F (·,W ) II) Suppose that conditions C1 and C2 of
Assumption 2 are in effect. Then, it is true that

‖F (x + u,W )‖L2p ≤ GD (u) + ‖T ([x,W ],u)‖L2p + Vp, (52)

for every (x,u) ∈ X × RN . Further, if condition C3 is in effect, then, for every µ ∈ (0, µo],

sup
x∈X
‖F (x + µU ,W )‖L2p ≤ V

′
p , µ

1+εG‖d (U)‖L2p + µ sup
x∈X
‖t2p (x,U)‖L2p + Vp. (53)

The main purpose of Assumption 2 is to guarantee boundedness of the gradients appearing in
the Free-MESSAGEp algorithm in a certain sense, uniformly on the respective feasible sets. In this
respect, we have the next result.

Lemma 5. (Gradient Boundedness) Suppose that Assumption 2 is in effect. Then, for every
0 < µ ≤ µo, there exist problem dependent constants B1 ≡ Bµ

1 < ∞ and B2 ≡ Bµ
2 < ∞, both

increasing and bounded in µ, such that

B1≥ sup
x∈X

E

{∥∥∥∥F (x+µU ,W )−F (x,W )

µ
U

∥∥∥∥2
2

}
and (54)

B2≥ sup
(x,y)∈X×Y

E

{∥∥∥∥(R (F (x+µU ,W )− (y+µU)))p− (R (F (x,W )−y))p

µ

[
U
U

]∥∥∥∥2
2

}
. (55)

Consequently, it follows that supx∈X ‖∇sµ (x)‖22 ≤ B1 and sup(x,y)∈X×Y ‖∇gµ (x, y)‖22 ≤ B2, imply-
ing that both sµ and gµ are Lipschitz in the usual sense on X and X × Y, respectively.

Proof of Lemma 5. We work assuming that p ∈ (1, 2]. If p ≡ 1, the proof follows accordingly. Since
(54) follows trivially from Lemma 4, we focus exclusively on showing (55). First, for every pair
(x, y) ∈ X × Y, we may carefully write

E
{
|(R (F (x + µu,W )− (y + µu)))p − (R (F (x,W )− y))p |2

}
≡ E

{
|(R (F (x + µu,W )− (y + µu)))2p/2 − (R (F (x,W )− y))2p/2 |2

}
≡ E

{
|(R (F (x + µu,W )− (y + µu)))p/2 − (R (F (x,W )− y))p/2 |2

× |(R (F (x + µu,W )− (y + µu)))p/2 + (R (F (x,W )− y))p/2 |2
}

≤ p2η(p−2)

4
E
{
|R (F (x + µu,W )− (y + µu))−R (F (x,W )− y)|2

× |(R (F (x + µu,W )− (y + µu)))p/2 + (R (F (x,W )− y))p/2 |2
}

≤ p2η(p−2)

4
E
{

(|F (x + µu,W )− F (x,W )|+ µ |u|)2

× |(R (F (x + µu,W )− (y + µu)))p/2 + (R (F (x,W )− y))p/2 |2
}

14



≤ p2η(p−2)

2
‖(|F (x + µu,W )− F (x,W )|+ µ |u|)2‖L2

×
(
‖(R (F (x + µu,W )− (y + µu)))p ‖L2 + ‖(R (F (x,W )− y))p ‖L2

)
≡ p2η(p−2)

2
‖|F (x + µu,W )− F (x,W )|+ µ |u|‖2L4

×
(
‖R (F (x + µu,W )− (y + µu))‖pL2p + ‖R (F (x,W )− y)‖pL2p

)
≤ p2η(p−2)

2

(
‖|F (x + µu,W )− F (x,W )|‖L4 + µ |u|

)2
×
(
‖R (F (x + µu,W )− (y + µu))‖pL2p + ‖R (F (x,W )− y)‖pL2p

)
≤ p2η(p−2)

(
µ1+εGd (u) + µt4 (x,u) + µ |u|

)2
×
(
R (0) + 2Vp + µ1+εGD1 + µ1+εGd (u) + µt4 (x,u) + µ|u|

)p
≤ p2η(p−2)2p−1

(
µ1+εGd (u) + µt4 (x,u) + µ |u|

)2
×
((
R (0) + 2Vp + µ1+εGD1

)p
+
(
µ1+εGd (u) + µt4 (x,u) + µ|u|

)p)
≡ µ2p2η(p−2)2p−1

(
µp
(
µεGd (u) + t4 (x,u) + |u|

)p+2

+
(
µεGd (u) + t4 (x,u) + |u|

)2(R (0) + 2Vp + µ1+εGD1

)p)
. (56)

Therefore, the tower property implies that

E

{∥∥∥∥(R (F (x+µU ,W )− (y+µU)))p− (R (F (x,W )−y))p

µ

[
U
U

]∥∥∥∥2
2

}

≡ 1

µ2
E

{
E
{
| (R (F (x+µU ,W )− (y+µU)))p− (R (F (x,W )−y))p |2|U , U

}∥∥∥∥[UU
]∥∥∥∥2

2

}
≤ p2η(p−2)2p−1

(
µpE

{(
µεGd (U)+ t4 (x,U)+ |U |

)p+2
(‖U‖22 +U2)

}
+
(
R (0)+2Vp+µ1+εGD1

)pE{(µεGd (U)+ t4 (x,U)+ |U |
)2

(‖U‖22 +U2)
})
, (57)

for all x ∈ X . The proof is now complete, but let us consider the two expectations on the right-hand
side of (57) separately, as a (in)sanity check. For the first one, we may write

E
{(
µεGd (U) + t4 (x,U) + |U |

)p+2
(‖U‖22 + U2)

}
≤ 2p+1E

{((
µεGd (U) + t4 (x,U)

)p+2
+ |U |p+2)(‖U‖22 + U2)

}
≡ 2p+1(E{(µεGd (U) + t4 (x,U)

)p+2‖U‖22
}

+ E
{(
µεGd (U) + t4 (x,U)

)p+2 |U |p+2 }
+ E

{
|U |p+2 ‖U‖22

}
+ E

{
|U |p+4 })

≤ 2p+1(2p+1(µε(p+2)E
{(
Gd (U)

)p+2‖U‖22
}

+ sup
x∈X

E
{(
t4 (x,U)

)p+2‖U‖22
})

+ 2p+1(µε(p+2)E
{(
Gd (U)

)p+2}E{|U |p+2 }+ sup
x∈X

E
{(
t4 (x,U)

)p+2}E{|U |p+2 })
+ E

{
|U |p+2 }E{‖U‖22}+ E

{
|U |p+4 }) ≡ O (1) . (58)

For the second one, the situation is similar. Enough said. �
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6.2 Recursions

We follow the approach taken previously in ([22], Section 4.4), but with appropriate technical mod-
ifications in the proofs of the corresponding results, reflecting the problem setting and assumptions
considered herein. Because the proof ideas are similar to ([22], Section 4.4), we postpone all proofs
of this section to Appendix E. Still, we emphasize that the results presented below crucially exploit
gradient boundedness ensured by Lemma 5, which follows as a result of Assumption 2.

Hereafter, let {Dn ⊆ F}n∈N be the filtration generated from all data observed so far, by both
the user and the ZOSO, with Dn , σ

{
xi, yi, zi,W i

1,W
i
2,U

i
1,U

i
2, U

i,∀i ∈ Nn
}
, n ∈ N. Also, if C

is a sub σ-algebra of F , we compactly write E {· |C } ≡ EC {·}. Our first basic result follows.

Lemma 6. (Iterate Increment Growth) Suppose that Assumption 2 is in effect. Then, for every
0 < µ ≤ µo, there exists a problem dependent constant Σ1

p < ∞, increasing and bounded in µ, such
that the process {xn}n∈N generated by the Free-MESSAGEp algorithm satisfies the inequality

ED
n

{
‖xn+1 − xn‖22

}
≤ Σ1

pα
2
n, (59)

for all n ∈ N, almost everywhere relative to P.

Proof of Lemma 6. See Appendix E.1. �

Using Lemma 6, we have the next result on the growth of the difference |yn− sµ (xn)|2.

Lemma 7. (First Zeroth-order SA Level: Error Growth) Suppose that Assumption 2 is in
effect. Also, let βn ∈ (0, 1], for all n ∈ N. Then, for every 0 < µ ≤ µo, there exists a problem
dependent constant Σ2

p < ∞, increasing and bounded in µ, such that the process {(xn, yn)}n∈N
generated by the Free-MESSAGEp algorithm satisfies the inequality

ED
n

{
|yn+1− sµ(xn+1)|2

}
≤ (1− βn)|yn− sµ (xn)|2 + Σ2

p(β
2
n + β−1n α2

n), (60)

for all n ∈ N, almost everywhere relative to P.

Proof of Lemma 7. See Appendix E.2. �

Similarly, when p > 1, the growth of zn − gµ(xn, yn) may be characterized as follows.

Lemma 8. (Second Zeroth-order SA Level: Error Growth) Suppose that Assumption 2 is in
effect. Also, choose p > 1, and let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Then, for every 0 < µ ≤ µo,
there exists a problem dependent constant Σ3

p < ∞, increasing and bounded in µ, such that the
process {(xn, yn, zn)}n∈N generated by the Free-MESSAGEp algorithm satisfies the inequality

ED
n

{
|zn+1− gµ(xn+1, yn+1)|2

}
≤ (1− γn)|zn− gµ(xn, yn)|2 + Σ3

p(γ
2
n + γ−1n α2

n + γ−1n β2n), (61)

for all n ∈ N, almost everywhere relative to P.

Proof of Lemma 8. See Appendix E.3. �

Next, let us define a Borel function g′µ : RN → R as

g′µ (x) , E
{(
R
(
F (x + µU ,W )− µU − sµ (x)

))p} ≡ gµ(x, sµ (x)). (62)
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Also note that, as in the originalMESSAGEp algorithm [22], it is true that, for every (n,x) ∈ N+×X ,

E
{
∇̂n+1
µ φ

(
x, sµ (x), g′µ (x)

)}
≡ ∇̂µφ(x) , (63)

implying that ∇̂n+1
µ φ constitutes an unbiased estimator of ∇̂µφ, that is, a valid stochastic gradient

associated with the latter. Using this fact, we now characterize the evolution of ‖xn+1−xo‖22, where
xo ∈ X is an optimal solution of problem (51), provided such solution exists.

Lemma 9. (Third Zeroth-order SA Level: Optimality Error Growth) Suppose that As-
sumption 2 is in effect, and let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Also, suppose that
X oµ ≡ arg minx∈Xφµ (x) 6= ∅ and consider any xo ∈ X oµ . Then, for every 0 < µ ≤ µo, there
exists another problem dependent constant Σ4

p <∞, also increasing and bounded in µ, such that the
process {(xn, yn, zn)}n∈N generated by the Free-MESSAGEp algorithm satisfies

ED
n

{
‖xn+1−xo‖22

}
≤
(
1+Σ4

pc
2(α2

nβ
−1
n + α2

nγ
−1
n 1{p>1}

))
‖xn−xo‖22 +Σ1

pα
2
n

−2αn
(
φ(xn)−φoµ

)
+ βn|y

n−sµ(xn)|2+γn|z
n−gµ (xn, yn)|21{p>1}, (64)

for all n ∈ N, almost everywhere relative to P, where φoµ ≡ infx∈X φµ (x).

Proof of Lemma 9. See Appendix E.4. �

At this point, it is important to observe that Lemmata 6, 7, 8 and 9 share exactly the same
structure with the corresponding results used in the analysis of the original MESSAGEp algorithm
of [22]; see, in particular, ([22], Section 4.4). Therefore, the behavior of the Free-MESSAGEp

algorithm as a method to solve the surrogate problem (51) can be analyzed almost automatically,
by calling the respective convergence results developed in [22], which are based exclusively on the
counterparts of Lemmata 6, 7, 8 and 9, presented therein. Then, the obtained results can be nicely
related to the base problem (1), via Lemma 3. This is the path taken for proving our main results,
as discussed below.

Also note that all constants Σ1
p, Σ2

p, Σ3
p and Σ4

p involved in Lemmata 6, 7, 8 and 9, respectively,
are all increasing and bounded in the smoothing parameter µ ∈ (0, µo]. Therefore, when deriving
convergence rates of the expected value type, based exclusively on Lemmata 6, 7, 8 and 9, similarly
to ([22], Section 4.4, and Lemmata 3, 5, 6 and 7) and, as we will see, under appropriate stepsize
initialization, all resulting constants will also be increasing and bounded functions of µ ∈ (0, µo].

6.3 Path Convergence

The path behavior of the Free-MESSAGEp algorithm may be characterized via the following result.
Hereafter, let φ∗ , infx∈X φ (x) ∈ R.

Theorem 1. (Path Convergence of the Free-MESSAGEp Algorithm) Suppose that Assumption
2 is in effect, and let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Also, suppose that

∑
n∈N

αn ≡ ∞,
∑
n∈N

α2
n + β2n+

α2
n

βn
<∞, and if p > 1,

∑
n∈N

γ2n +
α2
n

γn
+
β2n
γn

<∞. (65)
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Then, for 0 < µ ≤ µo, and if X oµ 6= ∅, there exists an event Ω′ ⊆ Ω with P(Ω′) ≡ 1, such that, for
every ω ∈ Ω′, the process {xn(ω)}n∈N generated by the Free-MESSAGEp algorithm converges as

xn (ω) −→
n→∞

xo (ω) ∈ X oµ , (66)

also implying that

lim
n→∞

φ (xn (ω))− φ∗ ≤ 2 sup
x∈X
|φµ (x)− φ (x)| ≡ Σoµ(µε + c). (67)

In other words, almost everywhere relative to P, {xn}n∈N converges to a point in the set of optimal
solutions of (51), and {φ (xn)}n∈N converges to a linearly shrinking µ-neighborhood of φ∗.

Proof of Theorem 1. The proof of (66) follows directly from ([22], Section 4.4, Theorem 3), based on
an application of the T -level almost-supermartingale convergence lemma [45]. To prove (67), note
that, for every ω ∈ Ω′, continuity of φ on X implies that

lim
n→∞

φ (xn (ω))− φ∗ ≡ φ (xo (ω))− φ∗. (68)

Then, since xo (ω) ∈ X oµ , Lemma 3 implies that

φ (xo (ω))− φ∗ ≡ φ (xo (ω))− inf
x∈X

φ (x)

≡ sup
x∈X

φ (xo (ω))− φ (x) (69)

≤ φµ (xo (ω))− φµ (xo (ω)) + Σoµ(µε + c)

≡ Σoµ(µε + c), (70)

and we are done. �

6.4 Convergence Rates

6.4.1 Convex Cost

For the general case of a convex cost F (·,W ), we have the following result on the rate of convergence
of the Free-MESSAGEp algorithm, concerning smoothened iterates of the form [44, 45]

x̂n ,
1

dn/2e
∑

i∈Nn−dn/2en

xi, n ∈ N+. (71)

Theorem 2. (Rate | Convex Cost | Subharmonic Stepsizes) Let Assumption 2 be in effect,
set α0 ≡ β0 ≡ γ0 ≡ 1, and for n ∈ N+, choose αn ≡ n−τ1, βn ≡ n−τ2 and γn ≡ n−τ3, where, for
fixed ε ∈ [0, 1), δ ∈ (0, 1) and ζ ∈ (0, 1) such that δ ≥ ζ,{

τ1 ≡ (3 + ε)/4 and τ2 ≡ (1 + δε)/2, if p ≡ 1

τ1 ≡ (7 + ε)/8, τ2 ≡ (3 + δε)/4 and τ3 ≡ (1 + ζε)/2, if p > 1
. (72)

Additionally, for 0 < µ ≤ µo, suppose that supn∈N E
{
‖xn−xo‖22

}
≤ Eµ < ∞, xo ∈ X oµ . Then, for

every n ∈ N+, the Free-MESSAGEp algorithm satisfies

E
{
φ (x̂n)− φ∗

}
≤ KEµp n−(1−ε)/(41{p∈(1,2]}+4) + Σoµ(µε + c), (73)

where KEµp ∈ (0,∞) is increasing and bounded in µ, whenever Eµ is in fact independent of µ.
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Proof of Theorem 2. As in the proof of Theorem 1, the result follows in part from ([22], Section 4.4,
Theorem 4 and its proof), which applied to our setting yields

E
{
φµ (x̂n)− φoµ

}
≤ KEµp n−(1−ε)/(41{p∈(1,2]}+4), ∀n ∈ N+, (74)

where KEµp ∈ (0,∞) is increasing and bounded in µ, whenever Eµ is in fact not dependent on µ (for
instance, whenever X is compact). Then, for any choice of xo ∈ X oµ , Lemma 3 implies that

φ (x̂n)− φ∗ ≡ φ (x̂n)− inf
x∈X

φ (x)

≡ sup
x∈X

φ (xo (ω))− φ (x)

≤ φµ (x̂n)− φµ (xo) + Σoµ(µε + c)

≡ φµ (x̂n)− φoµ + Σoµ(µε + c), ∀n ∈ N+, (75)

everywhere on Ω. Taking expectations completes the proof. �

6.4.2 Strongly Convex Cost

Next, we assume that F (·,W ) is σ-strongly convex on RN . If subharmonic stepsizes are used, we
have the next result, significantly improving Theorem 2. Hereafter, let x∗ , arg minx∈Xφ (x).

Theorem 3. (Rate | Strongly Convex Cost | Subharmonic Stepsizes) Let Assumption 2 be
in effect, and suppose that F (·,W ) is σ-strongly convex on RN . Set α0 ≡ σ−1 and β0 ≡ γ0 ≡ 1,
and for n ∈ N+, choose αn ≡ (σn)−1, βn ≡ n

−τ2 and γn ≡ n
−τ3, where, if p ≡ 1, τ2 ≡ 2/3, whereas

if p > 1, and for fixed ε ∈ [0, 1), and δ ∈ (0, 1),

τ2 ≡ (3 + ε)/4 and τ3 ≡ (1 + δε)/2. (76)

Also define the quantity no(τ2) ,
⌈
(1− τ1/(τ2+1)

2 )−1
⌉
∈ N3. Then, for 0 < µ ≤ µo and for every

n ∈ Nno(τ2), the Free-MESSAGEp algorithm satisfies

E
{
‖xn+1− x∗‖22

}
≤Σσ

p ×

{
(no(τ2)+3)n−2/3, if p≡ 1

(no(τ2)+2 (1− ε)−1)n−(1−ε)/2, if p∈(1, 2]

}
+

2Σoµ(µε+ c)

σ
, (77)

where Σσ
p ∈ (0,∞) is increasing and bounded in µ, and if σ ≥ 1, Σσ

p ≤ Σp/σ
2 <∞.

Proof of Theorem 3. We focus on the case where p ∈ (1, 2]; when p ≡ 1, the steps to the proof of the
theorem are similar. First, we discuss the implications of assuming σ-strong convexity of F (·,W )
on RN , which is equivalent to the condition

F (αx + (1− α)y,w) ≤ αF (x,w) + (1− α)F (y,w)− α(1− α)σ‖x− y‖22, (78)

being true for all (x,y,w) ∈ RN × RN × RM and for all α ∈ [0, 1]. Indeed, for F ((·) + µU ,W ) we
have

F (αx + (1− α)y + u,w) ≡ F (α(x + u) + (1− α)(y + u),w)

≤ αF (x + u,w) + (1− α)F ((y + u),w)
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− α(1− α)σ‖(x + u)− (y + u)‖22
≡ αF (x + u,w) + (1− α)F (y + u,w)

− α(1− α)σ‖x− y‖22, (79)

for all (x,y,u,w) ∈ RN × RN × RN × RM and for all α ∈ [0, 1]. This demonstrates that, for every
µ ≥ 0, F ((·) + µU ,W ) and thus F ((·) + µU ,W ) − µU are both strongly convex on RN with the
same parameter σ, independent of µ. Therefore, ([22], Proposition 5) implies that φµ is σ-strongly
convex on RN , which is equivalent to the alternative condition

φµ (x) ≥ φµ (y) + (∇φµ (y))T (x− y) + σ‖x− y‖22, (80)

being true for all (x,y) ∈ RN ×RN . Additionally, since φµ is σ-strongly convex on RN , its infimum
over X is attained for some unique xo ∈ X (depending on µ). As a result, it is true that

φµ (x) ≥ φµ (xo) + (∇φµ (xo))T (x− xo) + σ‖x− xo‖22, ∀x ∈ X . (81)

But by ([35], Theorem 3.33), and with the multifunction NX : X ⇒ RN being the normal cone to
X defined as

NX (x) ,
{
z ∈ RN

∣∣zT (x− x) ≤ 0, ∀x ∈ X
}
, (82)

it follows that

−∇φµ (xo) ∈ NX (xo) ⇐⇒ −∇φµ (xo) (x− xo) ≤ 0, ∀x ∈ X . (83)

This last fact also implies that

φµ (x)− φoµ ≥ σ‖x− xo‖22, ∀x ∈ X . (84)

Similarly,
φ (x)− φ∗ ≥ σ‖x− x∗‖22, ∀x ∈ X . (85)

Next, observe that, by our assumptions (in particular, Condition C5), in addition to the constants
Σ2
p, Σ3

p and Σ4
p involved in Lemmata 7, 8 and 9 being bounded and increasing in µ ∈ (0, µo], the

average errors E
{
|yn − sµ(xn)|2

}
and E

{
|zn − gµ(xn, yn)|2

}
are both uniformly bounded relative

to n ∈ N and σ > 0 and µ ∈ (0, µo], and increasing relative to the latter, as well. Additionally,
let us show that E

{
‖xn − xo‖22

}
is also uniformly bounded relative to n ∈ N+ and increasing and

bounded in µ ∈ (0, µo], given our particular choice of α0 ≡ σ−1. First, we exploit (84), and taking
expectations on both sides of (199) (see proof of Lemma 9), we get

E
{
‖xn+1 − xo‖22

}
≤ (1− 2σαn)E

{
‖xn − xo‖22

}
+ Σ1

pα
2
n + E

{
Un+1}, (86)

being true for all n ∈ N. Second, by (207) (once more, from the proof of Lemma 9), it is true that

ED
n

{
Un+1} ≤ σαn‖xn − xo‖22 + αn

Σ4
pc

2

σ

(
|yn − sµ(xn)|2 + |zn − gµ(xn, yn)|2

)
, (87)

almost everywhere relative to P. Again, taking expectations on both sides, we obviously have

E
{
Un+1}≤ σαnE{‖xn− xo‖22

}
+ αn

Σ4
pc

2

σ

(
E
{
|yn − sµ(xn)|2

}
+ E

{
|zn − gµ(xn, yn)|2

})
, (88)
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for all n ∈ N. Consequently, there is another constant Σ5
p < ∞, increasing and bounded in µ and

independent of σ, such that

E
{
‖xn+1 − xo‖22

}
≤ (1− σαn)E

{
‖xn − xo‖22

}
+ Σ1

pα
2
n + Σ5

pc
2αn
σ
, (89)

for all n ∈ N. By using the same inductive argument as in ([22], Section 4.4, last part of proof of
Lemma 9), and by noting that

E
{
‖x1 − xo‖22

}
≤ (1− σα0)E

{
‖x0 − xo‖22

}
+ Σ1

pα
2
0 + Σ5

pc
2α0

σ

≡ Σ1
pσ
−2 + Σ5

pc
2σ−2, (90)

where the right-hand side is increasing and bounded in µ, it easily follows that

sup
n∈N+

E
{
‖xn − xo‖22

}
≤ Σ1

pσ
−2 + Σ5

pc
2σ−2. (91)

This is all the “extras” we need. Now, by another closer inspection of ([22], Section 4.4, Lemma 9,
Theorem 5 and the respective proofs), it follows that for µ ∈ (0, µo] and for every n ∈ Nno(τ2) ⊆ N3,

E
{
‖xn+1 − xo‖22

}
≤ Σ

σ
p (no(τ2) + 2 (1− ε)−1)n−(1−ε)/2, (92)

for a problem dependent constant Σ
σ
p <∞, which, in case σ ≥ 1, may be bounded as Σ

σ
p ≤ Σp/σ

2,
for some other constant Σp (independent of σ). The constant Σ

σ
p is also increasing and bounded in µ,

since it is dependent only on Σ1
p, Σ2

p, Σ3
p and Σ4

p, as well as the uniform bounds of E
{
|yn−sµ(xn)|2

}
,

E
{
|zn − gµ(xn, yn)|2

}
, and E

{
‖xn − xo‖22

}
, as discussed above. Finally, we may exploit Lemma 3,

and (85), to obtain

E
{
‖xn+1 − x∗‖22

}
≤ 2E

{
‖xn+1 − xo‖22

}
+ 2‖xo − x∗‖22

≤ 2E
{
‖xn+1 − xo‖22

}
+ 2

1

σ
(φ (xo)− φ∗)

≤ Σσ
p (no(τ2) + 2 (1− ε)−1)n−(1−ε)/2 +

2Σoµ(µε + c)

σ
, (93)

being true for all n ∈ Nno(τ2), where Σσ
p , 2Σ

σ
p . �

We also provide a rate result for the case of constant stepsizes, very popular in practical con-
siderations. This is useful in particular when the distribution of W changes during the operation
of the algorithm, and the goal is to make the Free-MESSAGEp algorithm adaptive to such changes.
Also, let xo , arg minx∈Xφµ (x).

Theorem 4. (Rate | Strongly Convex Cost | Constant Stepsizes) Let Assumption 2 be in
effect, and suppose that F (·,W ) is σ-strongly convex on RN . For n ∈ N+, choose the stepsizes as
αn ≡ ασ−1, α ∈ (0, 1), βn ≡ β ∈ (0, 1] and γn ≡ γ ∈ (0, 1], such that α < min{β, γ}. Then, for
0 < µ ≤ µo and for every n ∈ N+, the Free-MESSAGEp algorithm satisfies

E
{
‖xn+1 − x∗‖22

}
≤ (1− α)n

(
2‖x0 − xo‖22 +

Σ̂1
p

σ2

)
+ Σ̂σ

pH(α, β, γ) +
2Σoµ(µε + c)

σ
, (94)

where Σ̂1
p ∈ (0,∞) is independent of σ, Σ̂σ

p ∈ (0,∞) is such that if σ ≥ 1, Σ̂σ
p ≤ Σ̂0

p/σ
2 < ∞, both

are increasing and bounded in µ, and H(α, β, γ), α+ β+α2β−2 + (γ+α2γ−2 + β2γ−2)1{p∈(1,2]}.
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Proof of Theorem 4. Once more, we explicitly present the proof whenever p ∈ (1, 2]. Let Jns ,
E
{
|yn − sµ(xn)|2

}
, Jng , E

{
|zn − gµ(xn, yn)|2

}
, and Jno , E

{
‖xn − xo‖22

}
, n ∈ N, and for

nonnegative sequences {Hn
s }n∈N and {Hn

g }n∈N, define

Jn , Jno +Hn−1
s Jn−1s +Hn−1

g Jn−1g , n ∈ N+. (95)

Then, by our assumptions, and from ([22], Section 4.4, Lemma 9), it follows that {Hn
s }n∈N and

{Hn
g }n∈N may be chosen in a way such that, for every n ∈ N+,

Jn+1 ≤ (1− α)Jn + Σ̃σ
p

(
α2 +

α3

β2
+ αβ +

α3

γ2
+
αβ2

γ2
+ αγ

)
. (96)

where 0 < Σ̃σ
p <∞ is increasing and bounded in µ. Proceeding inductively, we have

Jn+1 ≤ (1− α)Jn + Σ̃σ
p

(
α2 +

α3

β2
+ αβ +

α3

γ2
+
αβ2

γ2
+ αγ

)
≤ (1− α)2Jn−1 + Σ̃σ

p

(
α2 +

α3

β2
+ αβ +

α3

γ2
+
αβ2

γ2
+ αγ

)
(1 + (1− α))

...

≤ (1− α)n J1 + Σ̃σ
p

(
α2 +

α3

β2
+ αβ +

α3

γ2
+
αβ2

γ2
+ αγ

) ∑
i∈Nn−1

(1− α)i

≡ (1− α)n J1 + Σ̃σ
p

(
α2 +

α3

β2
+ αβ +

α3

γ2
+
αβ2

γ2
+ αγ

)
1− (1− α)n

α

≤ (1− α)n J1 + Σ̃σ
p

(
α+

α2

β2
+ β +

α2

γ2
+
β2

γ2
+ γ

)
. (97)

Now, again from ([22], Section 4.4, Lemma 9 and its proof), and as in Theorem 3, it follows that,
whenever σ ≥ 1, Σ̃σ

p ≤ Σ̃0
p/σ

2, for some Σ̃0
p < ∞, and the same type of argument holds for H0

s and
H0
g , as well, but for all σ > 0. Therefore, it is true that

J1
s ≡ J

1
o +H0

sJ
0
s +H0

gJ
0
g

≤ (1− α) J0
o + Σ1

p
α2

σ2
+ c2Σ5

p
α

σ2
+H0

sJ
0
s +H0

gJ
0
g

≤ J0
o +

Σ̃1
p

σ2
, (98)

where 0 < Σ̃1
p <∞ is independent of σ, and increasing and bounded in µ. As a result, we get

Jn+1
o ≤ Jn+1 ≤ (1− α)n

(
J0
o +

Σ̃1
p

σ2

)
+ Σ̃σ

p

(
α+ β + γ +

α2

β2
+
α2

γ2
+
β2

γ2

)
, (99)

being true for all n ∈ N+. Finally, using the same argument as in (93), it follows that,

E
{
‖xn+1 − x∗‖22

}
≤ (1− α)n

(
2‖x0 − xo‖22 +

Σ̂1
p

σ2

)
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+ Σ̂σ
p

(
α+ β + γ +

α2

β2
+
α2

γ2
+
β2

γ2

)
+

2Σoµ(µε + c)

σ
, (100)

for every n ∈ N+, where Σ̂1
p , 2Σ̃1

p, Σ̂σ
p , 2Σ̃σ

p and, whenever σ ≥ 1, Σ̂σ
p ≤ Σ̂0

p/σ
2 , 2Σ̃0

p/σ
2. The

proof is now complete. �

6.5 Discussion

First, let us comment on the role of ε ∈ [0, 1) on the rates of Theorems 2 and 3, which, for ε ≡ 0,
are of the orders of O(n−1/(41{p∈(1,2]}+4) + µ) (roughly) and O(n−1/2 + µ), as µ → 0, respectively,
the latter when p ∈ (1, 2]. However, if ε ≡ 0, the resulting stepsizes do not satisfy the conditions
of Theorem 1, and path convergence of the Free-MESSAGEp algorithm is not guaranteed (see also
[22]). Nevertheless, if ε ∈ (0, 1), rates arbitrarily close to the ones above can be achieved, while path
convergence is simultaneously guaranteed, ensuring better algorithmic stability.

We would also like to emphasize the explicit dependence on σ on both terms appearing on
the right of (77) and (94), implying that strong convexity benefits both algorithmic and smoothing
stability. Of course, all rate bounds in (73), (77) and (94) present certain tradeoffs among µ, σ and
N . In particular, the dependence on N appears of both terms on the right of (73), (77) and (94),
and varies significantly relative to the associated

(
D,T

)
-pair. This issue is discussed in detail in the

next section.

7 Sample Complexity Bounds and Dependence on µ and N

In this section, we derive explicit sample complexity bounds for the Free-MESSAGEp algorithm,
which reveal its dependence on the decision dimension, N , which is not due to intrinsic problem
structure, but due to the lack of gradient information. To do this, we restrict our attention to two
common and very important cost function classes discussed in Appendix D, that is, the Lipschitz
class and the smooth class.

Our results will be based on the detailed characterization of the quantities B1 and B2 of Lemma
5 relative to µ and N , which are the basis for defining the constants Σ1

p, Σ2
p, Σ3

p and Σ4
p involved in

Lemmata 6, 7, 8 and 9, respectively. In Section 6.1 (and Appendix E) we have already discussed and
used the fact that all aforementioned constants are increasing and bounded in µ, despite the lack
of specific assumptions on the involved

(
D,T

)
-pair. Now, by focusing either on Lipschitz or smooth

functions, which are recovered by specific choices of associated
(
D,T

)
-pairs, and by appropriately

choosing µ, it will be possible to fully characterize the dependence of our convergence rates on N ,
effectively quantifying their effect on the behavior of the Free-MESSAGEp algorithm.

For simplicity, in the following we assume a strongly convex cost, since this is a case of paramount
importance in practice. However, similar results hold for the the general case of a convex cost.
Also, in both of the subsections that follow, we prefer to develop our arguments in a discussion
format, rather than presenting formal proofs to previously stated results. However, at the end each
subsection, we will summarize our findings in the form of formal results.

7.1 Case Study #1: Lipschitz Class

As in Appendix D.1, we consider then class of functions satisfying the Lipschitz-like condition

‖F (x1,W )− F (x2,W )‖L2 ≤ G ‖x1 − x2‖2 , ∀(x1,x2) ∈ RN × RN , (101)
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with D (·) ≡ d (·) ≡ ‖·‖2 and T ≡ t2 ≡ t4 ≡ 0, that is, the associated
(
D,T

)
-pair is both uniformly

4-stable and 2-effective (actually stable), where the latter follows from the former. As described
above, we start with the quantities B1 and B2 of Lemma 5. For B1, we may write

B1 ≡ sup
x∈X

E
{(
µεGd (U) + t2 (x,U)

)2 ‖U‖22}
≡ sup

x∈X
G2E

{
‖U‖42

}
≡ O(N2). (102)

For B2, the situation is similar, but we take cases for p ∈ [1, 2]. If p ∈ (1, 2], then

B2 ≡ p
2η(p−2)2p−1

(
µpE

{(
µεGd (U)+ t4 (x,U)+ |U |

)p+2
(‖U‖22 +U2)

}
+
(
R (0)+2Vp+µ1+εGD1

)pE{(µεGd (U)+ t4 (x,U)+ |U |
)2

(‖U‖22 +U2)
})

= p2η(p−2)2p−1
(
µpE

{(
G ‖U‖2 + |U |

)p+2
(‖U‖22 +U2)

}
+
(
R (0)+2Vp+µGE

{
‖U‖2

})pE{(G ‖U‖2 +|U |
)2

(‖U‖22 +U2)
})

≤ µpO(Np/2+2) +
(
R (0)+2V +µG

√
N
})pO(N2), (103)

Because it will be useful later on, we also define the quantity

Bh
2 ≡ p

2η(p−2)2p−1
(
µpE

{(
µεGd (U)+ t4 (x,U)+ |U |

)p+2
U2}

+
(
R (0)+2Vp+µ1+εGD1

)pE{(µεGd (U)+ t4 (x,U)+ |U |
)2
U2})

= p2η(p−2)2p−1
(
µpE

{(
G ‖U‖2 + |U |

)p+2
U2}

+
(
R (0)+2Vp+µGE

{
‖U‖2

})pE{(G ‖U‖2 + |U |
)2
U2})

≤ µpO(Np/2+1) +
(
R (0)+2V +µG

√
N
})pO(N) (104)

In case, however, p ≡ 1, it is true that

B2 ≡ E
{(
µεGd (U)+ t2 (x,U)+ |U |

)2
(‖U‖22 +U2)

})
= E

{(
G ‖U‖2 + |U |

)2
(‖U‖22 +U2)

})
≡ O(N2), (105)

and similarly we may show that Bh
2 ≡ O(N), as well.

Observe that the dependence of both B2 and Bh
2 on N is independent of µ, in the structurally

simpler case where p ≡ 1. This fact gives us a rule for choosing µ when p ∈ (1, 2]. Indeed, if we set
µ ≡ M/

√
N , assumed hereafter, for some constantM > 0 to be fixed later, we obtain the bounds

B2 ≡ O(N2) and Bh
2 ≡ O(N), which are uniform relative to p.

Let us see how B1, B2, and B
h
2 shape the constants Σ1

p, Σ2
p, Σ3

p and Σ4
p of Lemmata 6, 7, 8 and

9. For Σ1
p, we know from the proof of Lemma 6 that

Σ1
p ≡

(√
B1 + c(η + 1{p≡1})

1−p(√B1B2 +
√
B2

))2
. (106)

However, a closer look to the proof of Lemma 6 reveals that a better estimate of Σ1
p, namely,

Σ1
p ≡

(√
B1 + c(η + 1{p≡1})

1−p
(√

B1B
h
2 +

√
B2

))2
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≡
(
O(N) + c(η + 1{p≡1})

1−p(O(N3/2) +O(N)
))2

≡ O(N3). (107)

For Σ2
p, the proof of Lemma 7 implies that

Σ2
p ≡ 2 max{(V ′1)2, B1}
≡ 2 max{(µ1+εGD2 + T2 + V )2, B1}
≡ 2 max{(MG+ V )2, B1}
≡ O(N2). (108)

Let us proceed with Σ3
p, which is relevant only when p ∈ (1, 2]. Indeed, from the proof of Lemma 8,

in particular, by (190)-(195), it is easy to see that

Σ3
p ≡ 2 max

{
sup
x∈X

E
{(
R (0) + 2Vp + µ1+εGD1 + µ1+εGd (U) + µt4 (x,U) + µ|u|

)2p}
,

2B2Σ
1
p, 4B2

(
(V ′1)2 + (µ1+εGD1 + V )2

)}
≡ 2 max

{
E
{(
R (0) + 2Vp + µGE

{
‖U‖2

}
+ µG‖U‖2 + µ|u|

)2p}
,

2B2Σ
1
p, 4B2

(
(µGD2 + T2 + V )2 + (µGD1 + V )2

)}
≤ 2 max

{
E
{(
R (0) + 2Vp + µG

√
N + µG‖U‖2 + µ|u|

)2p}
,

2B2Σ
1
p, 4B2

(
(µG
√
N + V )2 + (µG

√
N + V )2

)}
≤ max

{
O(Np),O(N5),O(N2)

}
≡ O(N5). (109)

Lastly, from the proof of Lemma 9, it is true that

Σ4
p ≡

{
L2(N +B1), if p ≡ 1

(N +B1)
(
(1 +

√
B2)η

(1−p) max{L, p−1(p− 1)η−p
√
B2}

)2
, if p ∈ (1, 2]

≡ O(N2+41{p∈(1,2]}). (110)

Next, we may observe that

E
{
|yn − sµ(xn)|2

}
≤ E

{
(|yn|+ |sµ(xn)|)2

}
≤ 4(µ1+εGD1 + V )2

≤ 4(MG+ V )2 ≡ O(1), (111)

and

E
{
|zn − gµ(xn, yn)|2

}
≤ E

{
(|zn|+ |gµ(xn, yn)|)2

}
≤ 4(R (0) + 2V + µ1+εG(D1 +D2) + µ(T2 + 1))2p

≤ 4(R (0) + 2V + 2MG+ µ)2p ≡ O(1). (112)
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Now, we have all the required information in order to calculate the dependence on N of the
constant Σσ

p , present in Theorem 3. To do this, we perform a very careful backtracking procedure
in the proof of Theorem 3 (see Section 6.4.2), bookkeeping the complexity of the constants involved
in the respective recursions, plus the complexity of initial conditions. Then, by closely reexamining
([22], Section 4.4, Lemma 9, Theorem 5 and the respective proofs), we may deduce that

Σσ
p ≡ O(N4+71{p∈(1,2]}). (113)

Further, if σ ≥ 1, it is also true that Σσ
p ≤ Σp/σ

2 ≡ O(N4+71{p∈(1,2]})/σ2. The next result summarizes
our discussion above, providing a complexity estimate of the Free-MESSAGEp algorithm, explicitly
showing the dependence on N , for the case of the Lipschitz class.

Theorem 5. (Rate | Lipschitz & Strongly Convex Cost | Subharmonic Stepsizes) Let
Assumption 2 be in effect, and suppose that F (·,W ) is σ-strongly convex on RN . Set α0 ≡ σ

−1 and
β0 ≡ γ0 ≡ 1, and for n ∈ N+, choose αn ≡ (σn)−1, βn ≡ n−τ2 and γn ≡ n−τ3, where, if p ≡ 1,
τ2 ≡ 2/3, whereas if p > 1, and for fixed ε ∈ [0, 1), and δ ∈ (0, 1),

τ2 ≡ (3 + ε)/4 and τ3 ≡ (1 + δε)/2. (114)

Also define the quantity no(τ2) ,
⌈
(1−τ1/(τ2+1)

2 )−1
⌉
∈ N3. Pick any δ > 0 and choose

µ ≡ M√
N
, withM > 0 sufficiently small, such that Σo

∗(M)M≤ σδ

4(1+ c)
, (115)

where, for the particular choice of µ, Σo
∗(M) , supN≥1 Σo/

√
N . Then, as long as

n≥


max

{
no(τ2),

(
2Σσ

p

δ

(
no(τ2)+3

))3/2}
≡O

((
N4

δ

)3/2)
, if p≡ 1

max

{
no(τ2),

(
2Σσ

p

δ

(
no(τ2)+

2

1− ε

))2/(1−ε)}
≡O

((
N11

δ

)2/(1−ε))
, if p∈ (1, 2]

, (116)

the Free-MESSAGEp algorithm satisfies E
{
‖xn+1−x∗‖22

}
≤ δ.

In comparison with the risk-neutral setup, where c ≡ 0, the constant corresponding to Σσ
p is of

the order of O(N2), since only B1 is involved in the respective calculations [28]. Also, the resulting
rate climbs to the order of O(N2)/n, with a complexity estimate of the order of O(N2/δ) iterations.

We would like to emphasize that the increased orderwise dependence on N in Theorem 5 may be
justified first by the increased difficulty of the risk-aware learning task, and second by the fact that
nothing more than mere Lipschitz continuity has been imposed on the cost function F (·,W ) (in ad-
dition to strong convexity). Most probably, the dependence on N can be improved by designing more
sophisticated versions of Free-MESSAGEp, possibly using ideas such as averaging, minibatching, or
multi-point finite differences for gradient approximation.

The respective version of Theorem 4 (rate with constant stepsizes) may be formulated by follow-
ing almost the same procedure as above, and is therefore omitted in our discussion.
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7.2 Case Study #2: Smooth Class

We now consider the class consisting of functions obeying the smoothness-like condition

‖F (x1,W )− F (x2,W )− (∇F (x2,W ))T (x1 − x2)‖L2 ≤ G ‖x1 − x2‖
2
2 , (117)

for all (x1,x2) ∈ RN × RN . In Appendix D.2, we associated this class with the
(
D,T

)
-pair where

D (·) ≡ ‖·‖22 and T([•, ?], ·) ≡ (∇F (•,?))T (·), and we showed that the associated
(
D,T

)
-pair is

uniformly 2-effective on X whenever

sup
x∈X

∥∥‖∇F (x,W )‖2
∥∥
L2
<∞, (118)

and with the choices

d (u) ≡ ‖u‖22 and (119)

t2 (x,u) ≡ ‖(∇F (x,W ))Tu‖L2 ≡
√

uT∇F(x)u, (120)

where
∇F(x) ≡ E{∇F (x,W ) (∇F (x,W ))T }, (121)

and
T2 ≡ sup

x∈X
‖t2 (x,U)‖L2 ≡ sup

x∈X

∥∥‖∇F (x,W )‖2
∥∥
L2
≡ O(1). (122)

for all (x,u) ∈ X × RN . Let us show that, if (118) is true, the
(
D,T

)
-pair under consideration is

uniformly 2-stable, as well. Indeed, one the one hand we have

E{(d (U))2 ‖U‖22} ≡ E{‖U‖62} ≡ O(N3) ⇐⇒ d (U) ‖U‖2 ∈ Z2, (123)

while, on the other, it is true that

E{(t2 (x,U))2 ‖U‖22} ≡ E{UT∇F(x)U ‖U‖22}

≡ E{tr(UT∇F(x)U ‖U‖22)}

≡ E{tr(UUT ‖U‖22∇F(x))}

≡ tr(E{UUT ‖U‖22}∇F(x))

= (N + 2)tr(∇F(x)) (124)

= (N + 2)
∥∥‖∇F (x,W )‖2

∥∥2
L2

≡ (N + 2)‖t2 (x,U)‖L2 <∞, (125)

which is equivalent to tq (·,U) ‖U‖2 being uniformly in Z2, where (124) is due to (167) (Section C).
Further, we now show that the involved

(
D,T

)
-pair is uniformly 4-stable under the natural

condition
sup
x∈X

∥∥‖∇F (x,W ) ‖2
∥∥
L4
<∞, (126)

which, of course, implies (118). Uniform 4-stability will be extremely crucial in our subsequent
complexity analysis, as we will shortly see. The situation regarding d is as before, that is,

E{(d (U))4} ≡ E{‖U‖82} ≡ O(N4) ⇐⇒ d (U) ∈ Z4 (127)
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E{(d (U))q ‖U‖22} ≡ E{‖U‖2q+2
2 } ≡ O(N q+1) ⇐⇒ d (U) ‖U‖2/q2 ∈ Zq, ∀q ∈ [2, 4]. (128)

The difficulty here comes from the function t4, which is naturally defined as

t4 (x,u) ≡ ‖(∇F (x,W ))Tu‖L4 , (129)

for all (x,u) ∈ X ×RN . First, we are interested in an efficient estimate for ‖t4 (·,U)‖L4 . For every
(x,u) ∈ X × RN , we have

(t4 (x,u))4 ≡ E{((∇F (x,W ))Tu)4}

≡ E
{(∑

i

∇xiF (x,W )ui

)4}
≡ E

{ ∑
i,j,k,l

∇W
xi
F∇W

xj
F∇W

xk
F∇W

xl
Fuiujukul

}
≡
∑
i,j,k,l

E
{
∇W
xi
F∇W

xj
F∇W

xk
F∇W

xl
F
}
uiujukul

,
∑
i,j,k,l

∇x
i,j,k,luiujukul, (130)

where, for brevity, we have defined ∇W
xi
F , ∇xiF (x,W ) , i ∈ N+

N , and where all involved expecta-
tions are legitimate (for instance, by Cauchy-Schwarz). Therefore, we may integrate one more time
and carefully write (again, all integrals exist)

E{(t4 (x,U))4} ≡
∑
i,j,k,l

∇x
i,j,k,lE{UiUjUkUl}

< 9
∑
i,j

E
{(
∇W
xi
F
)2(∇W

xj
F
)2}

≡ 9E
{∑

i,j

(
∇W
xi
F
)2(∇W

xj
F
)2}

≡ 9E
{(∑

i

(
∇W
xi
F
)2)2}

≡ 9E{‖∇F (x,W ) ‖42}, (131)

for all x ∈ X . As a result, we get that

sup
x∈X
‖t4 (x,U)‖L4 ≡ sup

x∈X
(E{(t4 (x,U))4})1/4

< 91/4 sup
x∈X

(E{‖∇F (x,W ) ‖42})
1/4

≡ 91/4 sup
x∈X

∥∥‖∇F (x,W ) ‖2
∥∥
L4

< 2 sup
x∈X

∥∥‖∇F (x,W ) ‖2
∥∥
L4
<∞. (132)

What is more, the previous inequality shows that, in fact, supx∈X ‖t4 (x,U)‖L4 ≡ O(1) (independent
of N). Second, using the fact that

t4 (x,u) ≤
∥∥‖∇F (x,W ) ‖2

∥∥
L4
‖u‖2, (133)
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then, for every q ∈ [2, 4], it holds that

‖t4 (x,U) ‖U‖2/q2 ‖Lq ≤
∥∥‖∇F (x,W ) ‖2

∥∥
L4
‖ ‖U‖2/q+1

2 ‖Lq , (134)

which implies that
sup
x∈X

E{(t4 (x,U))q ‖U‖22} ≡ O(N q/2+1). (135)

This is probably a suboptimal estimate, but it will serve our purposes well. Note, though, that when
q ≡ 2, (131) provides the improved estimate

E{(t4 (x,U))2 ‖U‖22} ≤
√

E{(t4 (x,U))4}E{‖U‖42}

≡ O(N). (136)

So far, we have shown that the
(
D,T

)
-pair associated to the smooth class (those functions satisfying

(117)) is uniformly 4-stable, and we have provided appropriate estimates for the quantities involved.
Next, we proceed with our complexity estimates. As we did in the Lipschitz case above (Section

7.1), we start with the quantities B1 and B2 of Lemma 5. Note that, in what follows, we use the
fact that the involved

(
D,T

)
-pair is both uniformly 2-stable and uniformly 4-stable, as previously

discussed. For B1, we have

B1 ≡ sup
x∈X

E
{(
µεGd (U) + t2 (x,U)

)2 ‖U‖22}
≡ sup

x∈X
E
{(
µG ‖U‖22 + t2 (x,U)

)2 ‖U‖22}
≡ µ2O(N3) +O(N). (137)

For B2, and if p ∈ (1, 2], then

B2 ≡ p
2η(p−2)2p−1

(
µpE

{(
µεGd (U)+ t4 (x,U)+ |U |

)p+2
(‖U‖22 +U2)

}
+
(
R (0)+2V +µ1+εGD1

)pE{(µεGd (U)+ t4 (x,U)+ |U |
)2

(‖U‖22 +U2)
})

= p2η(p−2)2p−1
(
µpE

{(
µG ‖U‖22 + t4 (x,U)+ |U |

)p+2
(‖U‖22 +U2)

}
+
(
R (0)+2V +µ2GE

{
‖U‖22

})pE{(µG ‖U‖22 + t4 (x,U)+|U |
)2

(‖U‖22 +U2)
})

≤ µ2p+2O(Np+3) + µpO(Np/2+2) +
(
R (0)+2V +µ2GN

})p
(µ2O(N3) +O(N)), (138)

As before, we also define the quantity

Bh
2 ≡ p

2η(p−2)2p−1
(
µpE

{(
µεGd (U)+ t4 (x,U)+ |U |

)p+2
U2}

+
(
R (0)+2V +µ1+εGD1

)pE{(µεGd (U)+ t4 (x,U)+ |U |
)2
U2})

= p2η(p−2)2p−1
(
µpE

{(
µG ‖U‖22 + t4 (x,U)+ |U |

)p+2
U2}

+
(
R (0)+2V +µ2GE

{
‖U‖22

})pE{(µG ‖U‖22 + t4 (x,U)+ |U |
)2
U2})

≤ µ2p+2O(Np+2) + µpO(1) +
(
R (0)+2V +µ2GN

})p
(µ2O(N2) +O(1)) (139)

When p ≡ 1, though, we get

B2 ≡ E
{(
µεGd (U)+ t2 (x,U)+ |U |

)2
(‖U‖22 +U2)

})
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= E
{(
µG ‖U‖22 + t2 (x,U)+ |U |

)2
(‖U‖22 +U2)

})
≡ µ2O(N3) +O(N), (140)

and similarly, Bh
2 ≡ µ

2O(N2) +O(1), as well.
Again, the case when p ≡ 1 provides guidance for choosing µ. In particular, if we set µ ≡

M/N3/2, which is assumed hereafter, for some constantM > 0, we obtain the bounds B1 ≡ O(N),
B2 ≡ O(N) and Bh

2 ≡ O(1). Again, as in Section 7.1, these bounds are uniform relative to p.
These improved complexity estimates on B1, B2, and B

h
2 have substantial effects on constants

Σ1
p, Σ2

p, Σ3
p and Σ4

p of Lemmata 6, 7, 8 and 9. To reveal those effects, we follow the same procedure
as in Section 7.1. Specifically, it is true that

• Σ1
p ≡ O(N).

• Σ2
p ≡ O(N).

• Σ3
p ≡ O(N2).

• Σ4
p ≡ O(N1+21{p∈(1,2]}).

• E
{
|yn − sµ(xn)|2

}
≡ O(1) and E

{
|zn − gµ(xn, yn)|2

}
≡ O(1).

Then, we may again calculate the dependence of the constant Σσ
p on N , resulting in the estimate

Σσ
p ≡ O(N2+31{p∈(1,2]}). (141)

As before, if σ ≥ 1, it is also true that Σσ
p ≤ Σp/σ

2 ≡ O(N2+31{p∈(1,2]})/σ2, and we have the following
result providing a complexity estimate of the Free-MESSAGEp algorithm for the case of the smooth
function class under study.

Theorem 6. (Rate | Smooth & Strongly Convex Cost | Subharmonic Stepsizes) Let
Assumption 2 be in effect, and suppose that F (·,W ) is σ-strongly convex on RN . Set α0 ≡ σ

−1 and
β0 ≡ γ0 ≡ 1, and for n ∈ N+, choose αn ≡ (σn)−1, βn ≡ n−τ2 and γn ≡ n−τ3, where, if p ≡ 1,
τ2 ≡ 2/3, whereas if p > 1, and for fixed ε ∈ [0, 1), and δ ∈ (0, 1),

τ2 ≡ (3 + ε)/4 and τ3 ≡ (1 + δε)/2. (142)

Also define the quantity no(τ2) ,
⌈
(1−τ1/(τ2+1)

2 )−1
⌉
∈ N3. Pick any δ > 0 and choose

µ ≡ M
N3/2

, withM > 0 sufficiently small, such that Σo
∗(M)M

(
M+ c

)
≤ σδ

4
. (143)

where, for the particular choice of µ, Σo
∗(M) , supN≥1 Σo/N3/2. Then, as long as

n≥


max

{
no(τ2),

(
2Σσ

p

δ

(
no(τ2)+3

))3/2}
≡O

((
N2

δ

)3/2)
, if p≡ 1

max

{
no(τ2),

(
2Σσ

p

δ

(
no(τ2)+

2

1− ε

))2/(1−ε)}
≡O

((
N5

δ

)2/(1−ε))
, if p∈ (1, 2]

, (144)

the Free-MESSAGEp algorithm satisfies E
{
‖xn+1−x∗‖22

}
≤ δ.
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Again, the respective version of Theorem 4 is omitted in our discussion, for brevity. In comparison
with the risk-neutral setup, where c ≡ 0, the respective constant corresponding to Σσ

p is of the order
of O(N). This gives a rate of the order of O(N)/n, with a complexity estimate of the order of
O(N/δ) iterations. In comparison with the Lipschitz class, as studied in Section 7.1, we observe
a very significant improvement in the case of smooth functions. Specifically, when p ≡ 1, smooth
functions require an order of O(N3) less iterations in order to reach the same expected solution
accuracy, whereas, when p ∈ (1, 2], this gap increases to an order of O(N12/(1−ε)) (!). Therefore,
smooth cost functions result in much more well-conditioned risk-aware problems of the form of (1),
at least in regard to the efficiency of the Free-MESSAGEp algorithm.

Of course, at this point there is no indication that any of our complexity estimates achieve some
form of optimality; in fact, it is most probable that the dependence on N can be improved, even in
the smooth case. However, this remains an open problem, subject to future investigation.

As a final comment, we would like to emphasize that, although the dependence on N is somewhat
large in the results for both the Lipschitz and smooth function classes, in practice we expect a much
better scalability of the Free-MESSAGEp algorithm since, in most cases, the cost function and the
risk regularizer would be chosen such that the conditioning of the problem is appropriate. Yet,
our complexity bounds indeed reveal that risk-aware learning is fundamentally more complex than
ordinary, risk-neutral leaning; in our work, this is clearly due to the compositional nature of the
base problem (1).

8 Future Work

There are several interesting topics for future work, building on the results presented in this paper;
indicatively, we discuss some. First, although our rate results quantify explicitly the dependence
on µ and σ, we have not paid much attention to the decision dimension, N . Indeed, as we briefly
discuss in Section 7, if c ≡ 0, then, orderwise relative to N , our bounds are equivalent to those
in [28], known to be order-suboptimal (see, e.g., [11]). Therefore, it would be of interest to see if
order improvement relative to N is possible, by potentially exploiting ideas from more ingenious
methods for risk-neutral zeroth-order optimization, such as those with diminishing µ, multi-point
finite differences, and/or minibatching. Second, also driven by [11], another challenging topic is the
development of lower complexity bounds for risk-aware learning, which would be useful in the design
of optimal algorithms and, of course, as complexity benchmarks. Lastly, relaxing the convexity of
the base problem is of particular interest, as the resulting setting fits more accurately application
settings in modern artificial intelligence and deep learning.

Appendix

A Two Toy-Examples of non-Lipschitz, non-Smooth, but SLipschitz Functions

Let f (·) ≡ (·)4. Indeed, for every compact (say) set F ⊂ R, and for every x ∈ F , we have∣∣f (x+ u)− f (x)− 4x3u− 4xu3
∣∣ ≡ ∣∣(x+ u)4 − x4 − 4x3u− 4xu3

∣∣
≡
∣∣6x2u2 + u4

∣∣
≤ 6 sup

x∈F
x2u2 + u4

31



≤ max

{
6 sup
x∈F

x2, 1

}(
u2 + u4

)
, LF

(
u2 + u4

)
, LFD (u) , (145)

for all u ∈ R, where, for U ∼ N (0, 1), and for every x ∈ R, it is true that E
{

4x3U+4xU3} ≡ 0. Thus,
although f is not Lipschitz and not smooth on R, it is still

(
LF ,D, 4(·)3(•) + 4(·)(•)3

)
-SLipschitz

on F . Also note that, although f is indeed Lipschitz and has a Lipschitz gradient on F in the
usual sense, these properties are not enough for our purposes; the fact that u ∈ R (and u ∈ RN , in
Definition 3) plays a key role in our analysis.

For an additional example of a SLipschitz function globally on R which is non-Lipschitz and
non-smooth, even on compact subsets of R, let f (·) ≡

√
|·|. Of course, f is neither Lipschitz nor

smooth on any subset F ⊆ R containing the origin, compact or not. Still, for every x ∈ F , the fact
is that ∣∣f (x+ u)− f (x)

∣∣ ≡ ∣∣√|x+ u| −
√
|x|
∣∣

≤
√∣∣ |x+ u| − |x|

∣∣
≤
√
|u|, (146)

for all u ∈ R. Therefore, although f is not Lipschitz and not smooth on F , it is still
(
1,
√
|·|, 0

)
-

SLipschitz on F . In this example, it is interesting to note that the function itself and the respective
divergence actually coincide, that is, f (·) ≡

√
|·| ≡ D (·).

B Proof of Lemma 2

If µ ≡ 0, the situation is trivial. So, for the rest of the proof, we assume that µ > 0. Let N : RN → R
be the standard Gaussian density on RN , that is,

N (u) ,
exp
(
−‖u‖22 /2

)√
(2π)N

, u ∈ RN . (147)

From condition (7), we have that

∞ >

∫
‖µu‖2 |f (µu)| N (u) du

≡
∫
‖x + µu‖2 |f (x + µu)| N

(
u +

x

µ

)
du

≥ N
(√

2
x

µ

)∫
‖x + µu‖2 |f (x + µu)| N

(√
2u
)
du, (148)

which implies that

∞ >

∫
‖x + µu‖2 |f (x + µu)| N

(√
2u
)
du

≡
∫
‖x + µu‖2 |f (x + µu)| N

(√
2u
)
1(0,1) (‖x + µu‖2) du

32



+

∫
‖x + µu‖2 |f (x + µu)| N

(√
2u
)
1[1,∞) (‖x + µu‖2) du

≥
∫
|f (x + µu)| N

(√
2u
)
1[1,∞) (‖x + µu‖2) du. (149)

Consequently,

∞ >

∫
|f (x + µu)| N

(√
2u
)
1[1,∞) (‖x + µu‖2) du

+

∫
|f (x + µu)| N

(√
2u
)
1(0,1) (‖x + µu‖2) du

≡
∫
|f (x + µu)| N

(√
2u
)
du, (150)

from where it follows that the function f (x + µU (·)) is well-defined and in Z1, for all x ∈ RN .
Equivalently, we have shown that the function fµ (·) ≡ E {f ((·) + µU)} is well-defined and finite,
everywhere on RN . The rest of the first part, and the second part of Lemma 2 may be developed
along the lines of [28], where we explicitly use the identity E {T (x,U)} ≡ 0, for all x ∈ F , since T
is a normal remainder on F .

For the third part, the result on the existence and representation of ∇fµ will follow by a careful
application of the Dominated Convergence Theorem, which provides an extension of the standard
Leibniz rule of Riemann integration, and permits interchangeability of differentiation and integration.
Specifically, we will exploit a multidimensional version of ([12], Theorem 2.27). To this end, for µ > 0,
define for brevity

ϕ (x,u) , f (u)µ−NN
(
x− u

µ

)
, (x,u) ∈ F × RN . (151)

By our construction, ϕ (x, ·) is Lebesgue integrable on RN for every x ∈ RN , and ϕ (·,u) is differ-
entiable everywhere on RN for every u ∈ RN , with

∇xϕ (x,u) ≡ µ−N−2f (u)N
(
u− x

µ

)
(u− x) . (152)

Now, consider any compact box B ⊆ RN . We may write

‖∇xϕ (x,u)‖2 ≡ µ
−N−2N

(
u− x

µ

)
|f (u)| ‖u− x‖2

≤ µ−N−2N
(
u− x

µ

)
|f (u)| (‖u‖2 + ‖x‖2)

≤ µ−N−2N
(
u

µ

)
exp

(
‖u‖2 supx∈B ‖x‖2

µ2

)
|f (u)| (‖u‖2 + supx∈B ‖x‖2)

, ψB (u) , ∀u ∈ RN . (153)

Note that, in the above, the use of the `2-norm is arbitrary; any (equivalent) vector norm works.
Then, with B , supx∈B ‖x‖2 /µ

2, and via a simple change of variables, as in the beginning of the
proof, it may be readily shown that ψB has a finite Lebesgue integral on RN and thus it is true that,
for every u ∈ RN ,

sup
x∈B
‖∇xϕ (x,u)‖2 ≤ ψB (u) ∈ L1

(
RN ,B

(
RN
)
, λ;R

)
, (154)
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where λ : B
(
RM

)
→ R+ denotes the corresponding Lebesgue measure. Then, it follows that the

function fµ (·) ≡
∫
ϕ (·,u) du is differentiable everywhere on B, and that

∇fµ (x) ≡ ∇
∫
ϕ (x,u) du ≡

∫
∇xϕ (x,u) du

≡
∫
µ−N−2f (u)N

(
u− x

µ

)
(u− x) du

=

∫
µ−1f (x + µu)N (u)udu−

∫
µ−1f (x)N (u)udu

≡
∫
f (x + µu)− f (x)

µ
uN (u) du, (155)

for every x ∈ B (Theorem 2.27 in [12]). But the box B is arbitrary, and any x ∈ RN is contained in
a compact box. For the rest of the third part of Lemma 2, if f is (L,D,T)-SLipschitz on F , we may
first write

E

{∥∥∥∥f (x + µU)− f (x)

µ
U

∥∥∥∥2
2

}
≡ 1

µ2
E
{
|f (x + µU)− f (x) |2 ‖U‖22

}
≡ 1

µ2
E
{
|f (x + µU)− f (x)− T (x, µU) + T (x, µU)|2 ‖U‖22

}
≤ 1

µ2
E
{(
LD (µU) + |T (x, µU)|

)2 ‖U‖22}, (156)

for all x ∈ F . Enough said. �

Remark 1. Note that the conclusions of Lemma 2 regarding the gradient of fµ cannot follow simply
by the Leibniz rule, and this is due to the unbounded support of the Gaussian density, which makes
the region of integration in the definition of fµ the whole Euclidean space RN (that is, infinite). �

C Another Example of an Effective/Stable
(
D,T

)
-pair

To illustrate an additional case of an (uniformly) effective/stable
(
D,T

)
-pair and an efficient di-

vergence, as well as its consequences on the conclusions of Lemma 2, let us consider the quadratic
fit cost f (·) ≡ ‖y −A (·)‖22, for fixed and compatible y ∈ RN

′
and A ∈ RN

′×N . Of course, f is
smooth on RN and therefore, we know already that it is SLipschitz on RN , as well. Still, at least for
illustration, an associated

(
D,T

)
-pair may constructed in a more elaborate way for this example.

First, for every pair (x,u) ∈ RN × RN , it is true that

‖y −A (x + u)‖22 − ‖y −Ax‖22
≡ ‖Ax + Au‖22 − 2yTAu− ‖Ax‖22
≡ uTATAu− 2

(
y −Ax

)T
Au

≡
∑
i,j

[
ATA

]
i,j
uiuj − 2

(
y −Ax

)T
Au
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≡
∑
i

[
ATA

]
i,i
u2i + 2

∑
i,j,i>j

[
ATA

]
i,j
uiuj − 2

(
y −Ax

)T
Au. (157)

In other words,∣∣∣‖y −A (x + u)‖22 − ‖y −Ax‖22 − 2
∑
i,j,i>j

[
ATA

]
i,j
uiuj + 2

(
y −Ax

)T
Au
∣∣∣

≡
∑
i

[
ATA

]
i,i
u2i

≤ max
{
diag

(
ATA

)}
‖u‖22 , (158)

for all (x,u) ∈ RN × RN . We may then naturally define

L , max
{
diag

(
ATA

)}
, (159)

D (u) , ‖u‖22 , ∀u ∈ RN and (160)

T (x,u) , 2
∑
i,j,i>j

[
ATA

]
i,j
uiuj − 2

(
y −Ax

)T
Au, ∀ (x,u) ∈ RN × RN , (161)

where it is easy to see that E {T (x, µU)} ≡ 0, for all x ∈ RN and µ ≥ 0; thus, f is (L,D,T)-
SLipschitz on RN . Then, with µo ≡ 1 (say), we may define, for every (x,u) ∈ RN × RN ,

D (µu) ≡ µ2D (u) , µ2d (u) and (162)

|T (x, µu)| ≤ µ2

(∣∣∣∣ ∑
i,j,i>j

[
ATA

]
i,j
uiuj

∣∣∣∣+
∣∣(y −Ax

)T
Au
∣∣) , µt (x,u) . (163)

Also observe that both E
{(
d (U)

)2} and E
{(
d (U)

)2 ‖U‖22} are finite. Additionally, we have

E
{(
t (x,U)

)2 ‖U‖22}≡E
{

4

(∣∣∣∣ ∑
i,j,i>j

[
ATA

]
i,j
UiUj

∣∣∣∣+
∣∣(y −Ax

)T
AU

∣∣)2

‖U‖22
}

≤ 8E
{( ∑

i,j,i>j

[
ATA

]
i,j
UiUj

)2
‖U‖22

}
+8E

{((
y−Ax

)T
AU

)2 ‖U‖22}
≤ 24N

∑
i,j,i>j

[
ATA

]2
i,j

+ 8(N + 2)
∥∥AT (y −Ax

)∥∥2
2

≡ 24N
∑
i,j,i>j

[
ATA

]2
i,j

+ 2(N + 2)‖∇f (x)‖22, (164)

for all x ∈ RN , where we have used the facts that

E
{( ∑

i,j,i>j

[
ATA

]
i,j
UiUj

)2

‖U‖22
}
≡
∑
τ

∑
i,j,i>j

∑
k,l,k>l

[
ATA

]
i,j

[
ATA

]
k,l
E
{
UiUjUkUlU

2
τ

}
≡
∑
τ

∑
i,j,i>j

[
ATA

]2
i,j
E
{
U2
i U

2
j U

2
τ

}
≤ 3N

∑
i,j,i>j

[
ATA

]2
i,j

(165)
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and

E
{((

y −Ax
)T

AU
)2 ‖U‖22} ≡ E

{(
y −Ax

)T
AUUTAT (y −Ax

)
‖U‖22

}
≡ E

{(
y −Ax

)T
AUUT ‖U‖22A

T (y −Ax
)}

≡
(
y −Ax

)T
AE
{
UUT ‖U‖22

}
AT (y −Ax

)
≡
(
y −Ax

)T
A
∑
τ

E
{
UUTU2

τ

}
AT (y −Ax

)
≡ (N + 2)

∥∥AT (y −Ax
)∥∥2

2
, (166)

respectively, and where the last expression in (166) is due to the additional fact that

∑
τ

E
{
UUTU2

τ

}
≡
∑
τ

E


U2
1U

2
τ U1U2U

2
τ . . . U1UNU

2
τ

U2
2U

2
τ . . . U2UNU

2
τ

. . .
...

same here UN−1UNU
2
τ

U2
NU

2
τ



≡
∑
τ


1 + 21{τ≡1} 0 . . . 0

1 + 21{τ≡2} . . . 0
. . .

...
same here 0

1 + 21{τ≡N}


≡ (N + 2) IN . (167)

A similar procedure may be used to verify boundedness of E
{(
t (·,U)

)2}. We thus see that the
involved

(
D,T

)
-pair is 2-stable with t ≡ t2 (2-effective, as well), and that D is efficient with ε ≡ 1.

Now, observe that f satisfies the moment condition (7) of Lemma 2. Consequently, this implies
that

sup
x∈F

∣∣fµ (x)− f (x)
∣∣ ≤ µ2LE{‖U‖22} ≡ µ2LN, (168)

which of course means that the accuracy of the approximation increases superlinearly as µ decreases.
Additionally, it follows that,

E

{∥∥∥∥f (x + µU)− f (x)

µ
U

∥∥∥∥2
2

}
≤ 1

µ2
E
{(
LD (µU) + |T (x, µU)|

)2 ‖U‖22}
≤ 1

µ2
E
{(
Lµ2d (U) + µt (x,U)

)2 ‖U‖22}
≤ µ22L2E

{(
d (U)

)2 ‖U‖22}+ 2E
{(
t (x,U)

)2 ‖U‖22}
≡ µ22L2E

{
‖U‖42 ‖U‖

2
2

}
+ 2E

{(
t (x,U)

)2 ‖U‖22}
≤ µ22L2 (N + 6)3 + µ248N

∑
i,j,i>j

[
ATA

]2
i,j

+ 4 (N + 2) ‖∇f (x)‖22, (169)

36



yielding

E

{∥∥∥∥f (x + µU)− f (x)

µ
U

∥∥∥∥2
2

}
≤ µ2O

(
N3)+ ‖∇f (x)‖22O (N) , (170)

for all x ∈ RN . If, instead of RN , we consider any compact subset F ⊆ RN , then our
(
D,T

)
-pair is

uniformly 2-stable on F , as well, by using the implication that supx∈X ‖∇f (x)‖22 <∞.

D Specialization of Lemma 3 for Common Function Classes

It is possible to obtain more detailed and informative bounds than those in Lemma 3 by restricting
our attention on classes of random cost functions satisfying Assumption 1 but where, additionally,
the associated

(
D,T

)
-pair is known explicitly.

D.1 Lipschitz Class on RN

The first class we would like to discuss is that consisting of functions satisfying the global Lipschitz-
like condition

‖F (x1,W )− F (x2,W )‖L2 ≤ G ‖x1 − x2‖2 , ∀(x1,x2) ∈ RN × RN . (171)

Of course, (171) implies that the expected cost E{F (·,W )} is (globally) G-Lipschitz on RN . By
setting u ≡ x1 − x2 ∈ RN , it easily follows that the choices D (·) ≡ ‖·‖2 and T ≡ 0 are valid, and
that the particular

(
D,T

)
-pair is trivially uniformly 2-effective on X , with d (·) ≡ ‖·‖2 and t2 ≡ 0.

Then, the following corollary to Lemma 3 may be formulated. The proof is omitted.

Corollary 1. (Smoothed Convex Surrogates | Lipschitz Class) Suppose that condition (171)
is true. Then, conditions C1 and C3 are satisfied automatically. If, additionally, the rest of As-
sumption 1 is in effect, then Lemma 3 implies that

sup
x∈X
|φµ (x)− φ (x)| ≤ µG

√
N + cC (µ)

(
2µG
√
N + µ

)
, (172)

where
C (µ) ≤ 1{p≡1} + η−p/2

(
R (0) + 2V + 2µG

√
N + µ

)p/2
1{p∈(1,2]}. (173)

D.2 Smooth Class on RN

The second class under the microscope consists of functions obeying the global smoothness-like
condition

‖F (x1,W )− F (x2,W )− (∇F (x2,W ))T (x1 − x2)‖L2 ≤ G ‖x1 − x2‖
2
2 , (174)

for all (x1,x2) ∈ RN × RN . Again, (174) implies that the expected cost E{F (·,W )} is (globally)
2G-smooth on RN . In this case, setting u ≡ x1 − x2 ∈ RN yields

sup
x∈X
‖F (x + u,W )− F (x,W )− (∇F (x,W ))Tu‖L2 ≤ G‖u‖

2
2, ∀u ∈ RN . (175)
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It is then natural to choose D (·) ≡ ‖·‖22 and T([•, ?], ·) ≡ (∇F (•,?))T (·) as the associated
(
D,T

)
-

pair. Additionally, as it might be evident at this point it is true that the previously defined
(
D,T

)
-

pair is uniformly 2-effective on X , whenever X is a compact subset of RN . Indeed, we may choose
d (·) ≡ ‖·‖22 and t2 (•, ·) ≡ ‖(∇F (•,W ))T (·)‖L2 , where we have, for every (x,u) ∈ X × RN ,

t2 (x,u) ≡
√

uTE{∇F (x,W ) (∇F (x,W ))T }u

,
√

uT∇F(x)u. (176)

Therefore, it us true that, for every x ∈ X ,

‖t2 (x,U)‖L2 ≡
√
E
{
UT∇F(x)U

}
≡
√
E
{

tr
{
UT∇F(x)U

}}
≡
√
E
{

tr
{
UUT∇F(x)

}}
≡
√

tr
{
E
{
UUT}∇F(x)

}
≡
√

tr
{
∇F(x)

}
≡
∥∥‖∇F (x,W ) ‖2

∥∥
L2
, (177)

and, as a result, T2 <∞, under our assumptions. Note that, in this case, ε ≡ 1, as in Appendix C.
Given the discussion above, we may formulate another corollary to Lemma 3, regarding the case of
the smooth class. The main arguments of the proof have already been presented.

Corollary 2. (Smoothed Convex Surrogates | Smooth Class) Suppose that condition (174) is
true. Then, condition C1 is satisfied automatically and, whenever supx∈X

∥∥‖∇F (x,W ) ‖2
∥∥
L2
<∞,

C3 is satisfied, as well. If, moreover, the rest of Assumption 1 is in effect, then Lemma 3 implies
that

sup
x∈X
|φµ (x)− φ (x)| ≤ µ2GN + cC (µ)

(
6µ2GN + µ(T2 + 1)

)
, (178)

where
C (µ) ≤ 1{p≡1} + η−p/2

(
R (0) + 2V + 6µ2GN + µ(T2 + 1)

)p/2
1{p∈(1,2]}, (179)

with T2 being an intrinsic feature of F . Specifically, we have T2 ≡ supx∈X
∥∥‖∇F (x,W ) ‖2

∥∥
L2
.

E Recursions: Proofs

E.1 Proof of Lemma 6

Fix n ∈ N and let p > 1; if p ≡ 1 the derivation is similar. Under Assumption 2, by nonexpansiveness
of the projection operator onto the closed and convex set X , and by the triangle inequality,

‖xn+1−xn‖2 ≤ αn
∥∥∇̂n+1

µ φ (xn, yn, zn)
∥∥
2

≤ αn
∥∥∆n+1

1,µ (xn)Un+1
1

∥∥
2

+ αnc
∥∥∆n+1

µ,p (xn, yn, zn)
∥∥
2
, (180)
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where ∆n+1
µ,p may be further expanded as∥∥∆n+1

µ,p (xn, yn, zn)
∥∥
2

≡
∥∥(zn)

1−p
p
(
Un+1

2 +∆n+1
1,µ (xn)Un+1

1 Un+1)∆n+1
2,µ,p (xn, yn)

∥∥
2

≤ η1−p
(∥∥∆n+1

2,µ,p (xn, yn)Un+1
2

∥∥
2

+
∣∣∆n+1

2,µ,p (xn, yn)Un+1∣∣∥∥∆n+1
1,µ (xn)Un+1

1

∥∥
2

)
. (181)

Consequently,

‖xn+1−xn‖2≤αn
∥∥∆n+1

1,µ (xn)Un+1
1

∥∥
2

+αncη
1−p∣∣∆n+1

2,µ,p (xn, yn)Un+1∣∣∥∥∆n+1
1,µ (xn)Un+1

1

∥∥
2

+αncη
1−p∥∥∆n+1

2,µ,p (xn, yn)Un+1
2

∥∥
2
, (182)

almost everywhere relative to P. Now, for (x, y) ∈ X×Y, it is true that E
{∥∥∆n+1

1,µ (x)Un+1
1

∥∥2
2

}
≤ B1,

E
{∥∥∆n+1

2,µ,p (x, y)Un+1
2

∥∥2
2

}
≤ B2, and also

E
{(∣∣Un+1∆n+1

2,µ,p (x, y)
∣∣∥∥∆n+1

1,µ (x)Un+1
1

∥∥
2

)2}
≡ E

{∣∣∆n+1
2,µ,p (x, y)Un+1∣∣2}E{∥∥∆n+1

1,µ (x)Un+1
1

∥∥2
2

}
≤ B1B2. (183)

It is then true that∥∥∥αn∥∥∆n+1
1,µ (x)Un+1

1

∥∥
2

+αncη
1−p∣∣∆n+1

2,µ,p (x, y)Un+1∣∣∥∥∆n+1
1,µ (x)Un+1

1

∥∥
2

+αncη
1−p∥∥∆n+1

2,µ,p (x, y)Un+1
2

∥∥
2

∥∥∥
L2

≤ αn
√
B1 + αncη

1−p√B1B2 + αncη
1−p√B2

≡ αn
(√

B1 + cη1−p
(√

B1B2 +
√
B2

))
, (184)

for all (x, y) ∈ X × Y. Therefore, taking squares and conditional expectations relative to Dn on
both sides of (182) yields

ED
n

{
‖xn+1−xn‖22

}
≤ α2

n

(√
B1 + cη1−p

(√
B1B2 +

√
B2

))2
, Σ1

pα
2
n, (185)

almost everywhere relative to P. But N is countable. �

E.2 Proof of Lemma 7

Fix n ∈ N, and let yn− sµ (xn) , Ens , for brevity. By nonexpansiveness of Euclidean projections
and by adding and subtracting the term sµ (xn), it follows that∣∣En+1

s

∣∣2≤(1− βn) |Ens |
2

+ 2β2n
∣∣F (xn + µUn+1

1 ,W n+1
1

)
− sµ

(
xn
)∣∣2

+ 2 (1 + βn) (1− βn)βnE
n
s

(
F
(
xn + µUn+1

1 ,W n+1
1

)
− sµ

(
xn
))

+ 2β−1n |sµ(xn+1)− sµ(xn)|22, (186)

where we have used our assumption that βn ≤ 1. Taking expectations relative to Dn on both sides,
and by Proposition 2 and Lemma 5, we have

ED
n

{∣∣En+1
s

∣∣2}≤ (1− βn)
∣∣Ens ∣∣2 +β2n2(V ′1)2 +0+β−1n 2B1ED

n

{
‖xn+1 − xn‖22

}
, (187)

almost everywhere relative to P. Lemma 6 and the fact that N is countable complete the proof. �
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E.3 Proof of Lemma 8

Fix n ∈ N. As in the proof of Lemma 7, by nonexpansiveness of projections and by adding and
subtracting appropriate terms, it is easy to show that zn − gµ (xn, yn) , Eng may be written as

En+1
g ≡ (1− γn)Eng +

(
gµ (xn, yn)− gµ(xn+1, yn+1)

)
+ γn

((
R
(
F
(
xn + µUn+1

2 ,W n+1
2

)
− µUn+1 − yn

))p − gµ (xn, yn)
)
. (188)

Then, it is true that∣∣En+1
g

∣∣2≡ (1+γn) (1−γn)2
∣∣Eng ∣∣2

+ (1+γn) γ2n
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+ 2
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(
F
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2 ,W n+1
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))p−gµ (xn, yn)
)

+
(
1+γ−1n

)∣∣gµ (xn, yn)− gµ(xn+1, yn+1)
∣∣2. (189)

Taking conditional expectations relative to Dn on both sides and for γn ≤ 1, we get

ED
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g
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∣∣2}+ 0, (190)

almost everywhere relative to P. Next, for the first of the last two nonzero terms on the right-hand
side of (190), we may write
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, (191)

almost everywhere relative to P. Now, for every (x, y) ∈ X × Y, already in the proof of Lemma 5
we have used the fact that

E
{(
R
(
F
(
x + µu,W

)
−µu− y

))2p}
≡ ‖(R (F (x + µu,W )− (y + µu))) ‖2pL2p
≤
(
R (0) + 2Vp + µ1+εGD1 + µ1+εGd (u) + µt4 (x,u) + µ|u|

)2p
, (192)

implying the existence of some constant Σ1 < ∞, problem dependent but independent of x and y
(due to condition C3) and increasing and bounded in µ, such that

ED
n

{∣∣(R(F (xn + µUn+1
2 ,W n+1

2
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−µUn+1 − yn

))p − gµ (xn, yn)
∣∣2} ≤ Σ1. (193)

almost everywhere relative to P. For the second of the last two nonzero terms on the right-hand
side of (190), observe that, by Lemma 5, we immediately obtain∣∣gµ(xn+1, yn+1)− gµ (xn, yn)

∣∣
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≡
√
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√
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yielding, by (say) Proposition 2 (and condition C4)
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almost everywhere relative to P. Combining (195), (193) and (190), we end up with the desired
inequality, being valid almost everywhere relative to P. But N is countable. �

E.4 Proof of Lemma 9

As usual, fix n ∈ N+, and let p > 1; again, if p ≡ 1 the derivation is similar. Nonexpansiveness of
the projection operator onto X yields

‖xn+1−xo‖22 ≤
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µ φ (xn, yn, zn)

∥∥2
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where Un+1 : Ω→ R is defined as
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From the proof of Lemma 6, it follows that
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p, (198)

almost everywhere relative to P. Hence, taking conditional expectations on both sides of (196)
relative to Dn and exploiting the convexity of φµ, we have
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almost everywhere relative to P.
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Let us focus on the residual term ED
n

{
Un+1}. By construction, we have, for every (x, y) ∈ X×Y,
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Consequently, by Cauchy-Schwarz, it is true that
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almost everywhere relative to P. We may further bound the last term (left to right) on the right-hand
side of (201) from above as∥∥∇gµ(xn, sµ(xn))
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almost everywhere relative to P, where Σ2 , η
(1−p) max{L, p−1(p− 1)η−p
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we may also write
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almost everywhere relative to P. As a next step, by Lemma 5, we observe that
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This yields, in turn,
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almost everywhere relative to P, where Σ3 ,
(√
N +B1

)
(1 +
√
B2)Σ2. Introducing the stepsizes βn

and γn, ED
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Un+1} may be further bounded as
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almost everywhere relative to P. Calling Σ4
p ≡ Σ

2
3 whenever p > 1 (and accordingly whenever p ≡ 1),

combining (208) with (199), and the fact that N is countable completes the proof. �
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