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Abstract—Learning optimal resource allocation policies in wire-
less systems can be effectively achieved by formulating finite dimen-
sional constrained programs which depend on system configuration,
as well as the adopted learning parameterization. The interest here is
in cases where system models are unavailable, prompting methods
that probe the wireless system with candidate policies, and then
use observed performance to determine better policies. This generic
procedure is difficult because of the need to cull accurate gradient
estimates out of these limited system queries. This paper constructs
and exploits smoothed surrogates of constrained ergodic resource
allocation problems, the gradients of the former being representable
exactly as averages of finite differences that can be obtained through
limited system probing. Leveraging this unique property, we develop
a new model-free primal-dual algorithm for learning optimal ergodic
resource allocations, while we rigorously analyze the relationships
between original policy search problems and their surrogates, in
both primal and dual domains. First, we show that both primal and
dual domain surrogates are uniformly consistent approximations of
their corresponding original finite dimensional counterparts. Upon
further assuming the use of near-universal policy parameterizations,
we also develop explicit bounds on the gap between optimal values of
initial, infinite dimensional resource allocation problems, and dual
values of their parameterized smoothed surrogates. In fact, we show
that this duality gap decreases at a linear rate relative to smoothing
and universality parameters. Thus, it can be made arbitrarily small
at will, also justifying our proposed primal-dual algorithmic recipe.
Numerical simulations confirm the effectiveness of our approach.

Index Terms—Wireless Systems, Stochastic Resource Allocation,
Zeroth-order Optimization, Constrained Nonconvex Optimization,
Deep Learning, Lagrangian Duality, Strong Duality.

I. INTRODUCTION AND PROBLEM FORMULATION

We investigate optimal wireless communication systems oper-
ating over realizations of random fading channels H ∈ H ⊆ RNH

with distribution MH. Resources such as transmission power and
channel access are allocated to jointly maximize the service levels
of one or multiple users, in a certain sense. Due to randomness
of H, a reasonable objective is to optimize quality of service in
an ergodic regime, i.e., by averaging all possible instantaneous
service levels relative to the fading distribution MH. Then,
optimal wireless system design may be abstracted to a stylized
base resource allocation problem of the form [1]

maximize
x,p(·)

go(x)

subject to x ≤ E{f(p(H),H)}
g(x) ≥ 0, (x,p) ∈ X × P

; (1)
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in (1), the policy p : H → RNR maps fading states H to NR

resource allocation decisions p(H), the function f : RNR ×H →
RNS maps decisions and fading values to NS instantaneous
service level metrics, the average of which bounds the ergodic
metrics x ∈ RNS , whose worth we evaluate through the utilities
go : RNS → R and g : RNS → RNg . Ergodic performances are
further restricted to the set X ⊆ RNS and resource allocations
are further restricted to the set P , the latter inducing pointwise
constraints on each individual value p(H) of every candidate
policy p [1], for each fading realization H.

Problem (1) conveniently abstracts several resource allocation
tasks of practical importance. Typical examples of service level
metrics are system/network capacities, rates, and signal-to-noise
ratios. Also, the objective scalar utility function go can be chosen
as a weighted or proportional fairness combination of ergodic
service levels, whereas the vector utility g may be designed to
impose explicit user demand and fairness constraints. In fact, it
is relatively straightforward to see that particular cases of (1)
appear naturally in, e.g., point-to-point channels [1], interference
channels [1]–[4], wireless networking [1], [5], [6], as well as
multiple access [7], [8], random access [9], [10] and frequency
division multiplexing [11]–[13]. Less obvious application areas
where resource allocation tasks can also be formulated as partic-
ular cases of (1) include MIMO systems [14], [15], beamforming
[16]–[18], caching [19], and wireless control [20]–[22]. For some
concrete and concise examples explicitly relating (1) to practical
wireless system models, also see [1], [23], [24].

Although problems in [1]–[22] have their own difficulties,
they all share three challenges which are well-described by (1):
Dimensionality, lack of convexity, and model availbaility. Indeed,
when H is an infinite set –as in most applications– finding an
optimal or near-optimal solution to (1) requires direct policy
search, which is a rather obscure and complicated task. Further,
while the utilities go and g and the feasible set X are often known
design choices and can be made concave or convex as needed, this
is not the case with the distribution MH, the service metric f , or
the set P . These entities depend on propagation physics, as well
as models of interference and multiple access management. Most
often, such models are either inaccurate or unavailable, especially
in complex networking settings, whereas in most existing models
the form of f and P render (1) nonconvex [1].

Lack of convexity is an inherent challenge and it is accepted
that we settle for locally optimal solutions, heuristics, or re-
laxations. To some extent, the same counts for dimensionality
and model availability. However, the recent advent of machine
learning for wireless communications [23]–[39] has dawned the
realization that both these challenges can be ameliorated with the
incorporation of learning parametrizations [23], [24]. To see why
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this is true, introduce a parameterization ϕ : H×RNϕ → RNR ,
and restrict resource allocations as p(·) ≡ ϕ(·,θ),θ ∈ RNϕ .
Then, the base problem (1) may be relaxed as

maximize
x,θ

go(x)

subject to x ≤ E{f(ϕ(H,θ),H)}
g(x) ≥ 0, (x,θ) ∈ X ×Θ

, (2)

where Θ ⊆
{
θ ∈ RNϕ

∣∣ϕ(·,θ) ∈ P
}

is a nonempty and closed
parameter space. Through the parametrization ϕ, also known as
a Policy Function Approximation (PFA) [40], problem (2) serves
as a finite dimensional surrogate for the infinite dimensional
problem (1) [23]. Solving such a surrogate incurs some inevitable
loss of optimality. Nevertheless, this issue can be mitigated by
exploiting well-known parametric function classes with universal
or near-universal approximation properties such as Radial Ba-
sis Functions (RBFs) [41], Reproducing Kernel Hilbert Spaces
(RKHSs) [42] and Deep Neural Networks (DNNs) [43].

While it is clear that (2) replaces infinite dimensional search
by finite dimensional optimization, it is not obvious how (2) can
circumvent the need for accurate models. This is addressed in
[23], which builds on the observation that the PFA formulation (2)
represents a scalarization of a multi-objective statistical learning
problem. In fact, each entry of x is associated with an expected
reward, with the difference of the two formulating a stochastic
constraint. Each expected reward has the form of the objective
of a greedy reinforcement learning problem [40], [44]–[46], in
which H and ϕ(H,θ) correspond to the state and control actions,
respectively. In that sense, it is not only that we can reformulate
optimal allocation of resources in wireless systems as a learning
problem, but that learning resource allocations is inherently a
learning problem. This observation led to a primal-dual training
method for finding an optimal solution to (2) in [23], which relies
on stochastic approximation [47], [48], and attains model-free
operation borrowing randomization ideas from policy gradient
methods in reinforcement learning [46].

Although the primal-dual learning algorithm of [23] has been
shown to work well in some examples, including large scale
networks with proper parameterizations [24], issues associated
with model-free operation are not addressed. As is the case with
policy gradient, the algorithm of [23] requires use of randomized
policies. We know that these are inefficient as compared with
deterministic policies, but we lack understanding of the loss of
optimality associated with specific randomization choices. The
main contribution of this paper is to put forth a principled ap-
proach for solving the PFA (2) via model-free training. We do so
by avoiding the use of randomized policies altogether, and instead
relying on appropriately constructed, smoothed surrogates to (2),
which enable exact zeroth-order gradient representation [49].
This approach not only yields a new, efficient and technically
grounded model-free training algorithm, but also enables detailed
analysis, quantifying the relation of both problems (1) and (2) to
the smoothed surrogate corresponding to the latter, in both primal
and dual domains. Specifically, our contributions are as follows.
The Primal Smoothed Surrogate (Section III). We introduce a
new smoothed surrogate to the constrained parameterized prob-
lem (2), for which we establish consistency, as well as explicit
approximation rates. Our construction leverages recent results

on function approximation via Gaussian convolution [49], and
ensures that both the objective and constraints of the proposed
smoothed surrogate approximate those of (2) uniformly in their
feasible sets, under mild regularity conditions (Lemmata 3 and 4).
The quality of the approximation is controlled by user-prescribed,
nonnegative smoothing parameters µS and µR, each associated
with the decision variables x and θ of (2), respectively. The
proposed surrogate exhibits rather desirable properties. First, as
either of the smoothing parameters decreases, the corresponding
approximation errors shrink, and at a linear rate. Second, all
smoothed approximations involved are always differentiable, and
their gradients may be represented exactly as averages of finite
differences, which are uniformly stable relative to both µS and
µR. Consequently, such approximations can be exploited to de-
fine zeroth-order stochastic quasi-gradients of the objective and
all constraints of (2), with consistent and predictable behavior.
Third, it is possible to establish simple and easily satisfiable
conditions on (2), which ensure well-definiteness and consistency
of the smoothed surrogate, as well as feasibility within the
feasible sets of both (2) and (1) (Theorems 6 and 7).

The Dual Smoothed Surrogate (Section IV-A). We analyze the
dual of our smoothed surrogate as a smoothed approximation to
the dual of (2). We establish explicit upper and lower bounds on
the difference of the respective dual optimal values, with both
bounds being linearly decreasing relative to both µS and µR

(Theorem 12). This result is of independent interest, because it
confirms that Gaussian smoothing can be effectively leveraged in
the dual domain for the design of general zeroth-order (model-
free) methods, applicable to constrained programs and, more
broadly, problems of the saddle point type.

Duality Gap of Smoothed Surrogates (Section IV-B). Assum-
ing an ϵ-universal policy parameterization, we take [23] strictly
one step further by completely characterizing the duality gap
between the optimal value of the variational problem (1) and the
dual value of the proposed smoothed surrogate. Specifically, we
show that the aforementioned duality gap is, in absolute value,
of the order of O(µS +µR+ ϵ) (Theorem 16). If µS ≡ µR ≡ 0,
our duality result recovers exactly that developed earlier in [23],
whereas, for µS > 0 and µR > 0, it explicitly quantifies the
combined effects of both policy parameterization and smoothing
on approximating the optimal value of the original problem (1)
via surrogate dualization.

Model-Free Learning (Section V). We develop a new random-
ized zeroth-order primal-dual algorithm for tackling (2), which
exploits the stochastic zeroth-order gradient representation of our
proposed smoothed approximations, and fits the desired model-
free setting by construction. Our primal-dual algorithm is similar
to that proposed in [23], but with a couple of twists; it takes
advantage of our sensitivity and duality analyses and, compared
to the policy gradient approach of [23], it requires no policy
randomization, and it operates exclusively on probing go, g and
the composition f(ϕ(H, ·),H), without the need of computing
the gradient of the parametric representation ϕ(H, ·). Further,
the proposed algorithm converges to a stationary point of the
dualized smoothed surrogate, the latter satisfying our duality gap
guarantees; its optimal value can be made arbitrarily close to the
optimal value of the original resource allocation problem (1) at
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will, by properly selecting smoothing parameters µS and µR, as
well as an ϵ-universal parameterization ϕ.
Our contributions are also supported by indicative numerical
simulations (Section VI), justifying our approach and confirming
our theoretical findings. Indeed, our simulations demonstrate
near-ideal performance of the proposed model-free method, as
compared to both strictly optimal solutions and state-of-the-art
heuristics, both relying on availability of explicit system models.

In the analysis that follows, we assume that the feasible set of
(1) is nonempty, that E{f(p(H),H)} exists and is finite for every
p ∈ P , and that the optimal value of (1), P∗ ∈ (−∞,∞], is
attained for at least one feasible decision; thus, P∗ < ∞. Similar
to (1), we assume that (2) has at least one feasible point, as well.
Then, if P∗

ϕ ∈ (−∞,∞] denotes the optimal value of (2), it
follows that P∗

ϕ ≤ P∗, implying that P∗
ϕ < ∞. For simplicity,

we also assume that P∗
ϕ is attained within the feasible set of (2).

II. SMOOTHING VIA GAUSSIAN CONVOLUTION

This section introduces Gaussian smoothing and its properties,
and follows closely the corresponding treatment in [49].

Let f : RN → R be Borel. Also, for any random element
U : Ω→RN following the standard Gaussian measure on RN ,
hereafter denoted as U ∼ N (0, IN ), and for µ ≥ 0, consider
another Borel function fµ : RN → R, defined, for every x ∈
RN , as

fµ (x) ≜ E {f (x+ µU)} ≡
ˆ

f (x+ µu)N (u) du, (3)

with N : RN → R being the standard Gaussian density, i.e.,

N (u) ≜ (2π)
−N/2

exp
(
−∥u∥22 /2

)
, u ∈ RN , (4)

provided that the involved integral is well-defined. For every µ >
0, fµ may be easily shown to be a convolution of the original
function f with the Gaussian density on RN with mean zero and
covariance equal to µ2IN . Indeed, for every x ∈ RN , and via a
simple change of variables, it is true that

fµ (x) =

ˆ
f (u)µ−NN

(
x− u

µ

)
du

≡
(
f ∗
[
µ−NN

(
(·)µ−1)]) (x) . (5)

Therefore, the smoothed function fµ may be seen as the output
of a linear filter whose impulse response is the standard gaussian
pulse, taking f as its input.

In many cases, fµ turns out to be everywhere differentiable
on RN , even if f is not, whereas the gradient of fµ admits a
zeroth-order representation. In particular, such is the case of all
Lipschitz functions on RN [49], as the next result suggests.

Lemma 1. (Properties of fµ [49]) Let U ∼ N (0, IN ), and
consider any globally Lipschitz function f : RN → R. Then, for
any F ⊆ RN , the following statements are true:

• For every µ ≥ 0, fµ is well-defined and finite on F , and

sup
x∈F

|fµ (x)− f (x)| ≤ µL
√
N. (6)

• If f is convex on RN , so is fµ, and fµ ≥ f on F .

• For every µ > 0, fµ is differentiable on F , and its gradient
∇fµ : RN → RN admits the representation

∇fµ (x) ≡ E
{
f (x+ µU)− f (x)

µ
U

}
, (7)

for all x ∈ F . Further, it is true that

sup
x∈F

E

{∥∥∥∥f (x+µU)− f (x)

µ
U

∥∥∥∥2
2

}
≤L2(N+4)2. (8)

Lemma 1 will be key to the results presented in this paper, as
discussed in detail as follows.

III. SMOOTHED CONSTRAINED PROGRAM SURROGATES

In this section, we introduce a new, smoothed surrogate of
the whole constrained program (2), as promised in Section I,
leveraging the results of Section II. We also introduce conditions
under which this smoothed surrogate is well-defined, and estab-
lish various of its properties, as well as its structural relation to
(2). The power of the proposed surrogate is in that it provides a
technically grounded means for dealing with (2) in the model-free
setting, i.e., when the functions go, g and f are apriori unknown,
and may be only observed through limited probing.

A. Surrogate Construction

Let µS ≥ 0, µR ≥ 0, and consider random elements US ∼
N (0, INS

) and UR ∼ N (0, INϕ
), the latter taken independent

of H. Driven by the results of Section II, we define smoothed
versions of go, g and E{f(ϕ(H, ·),H)}≜ f

ϕ
(·) as

goµS
(x) ≜ E{go(x+ µSUS)}, x ∈ X , (9)

gµS
(x) ≜ E{g(x+ µSUS)}, x ∈ X and (10)

f
ϕ
µR

(θ) ≜ E{f(ϕ(H,θ + µRUR),H)}, θ ∈ Θ, (11)

where, at this point, we arbitrarily assume that the involved ex-
pectations are well-defined and finite on X and Θ. We will return
to those issues shortly. Then, we may formulate a (hopefully)
smoothed version of problem (2) as

maximize
x,θ

goµS
(x)

subject to x+ S(µR) ≤ f
ϕ
µR

(θ)

gµS
(x) ≥ 0, (x,θ) ∈ X ×Θ

, (12)

where S : R+ → R
NS
+ is a nonnegative feasibility slack,

with properties to be determined. Formulation of the smoothed
surrogate (12) is well motivated due to the fact that, whenever
the objective go and all entries of the constraint vector functions
g and f(ϕ(H, ·),H) are sufficiently well-behaved, such that
Lemma 1 appropriately applies, the smoothed functions goµS

, gµS

and f
ϕ
µR

are differentiable, and the respective gradients may be
represented as averages of suitably defined finite differences. This
is particularly important in developing effective and predictable
methods for solving problem (2) in the model-free setting: Finite
differences are by construction based on function evaluations
only. Thus, the surrogate (12) constitutes a natural zeroth-order
proxy for dealing with the original parameterized problem (2).

However, before focusing on how to use (12) in order to solve
(2), we have to make sure that (12) is a well-defined and feasible
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problem, and also reveal its fundamental connection to (2). These
tasks are the subject of the rest of this section.

B. Smoothing go,g and f
ϕ

Our treatment will require imposing appropriate structure on
the functions involved in (2), as we now discuss in detail.
Hereafter, the i-th entries of g (resp. gµS

) and f (resp. f
ϕ
µR

)
will be denoted as gi (giµS

), i ∈ N+
Ng

and f i (f
ϕ,i

µR
), i ∈ N+

NS
,

respectively.

Assumption 1. The following conditions are satisfied:
C1 For every i∈{o,N+

Ng
}, gi is Li

g-Lipschitz on RNS .
C2 For every i∈N+

NS
, there is Li

f < ∞, such that

∥f i(ϕ(H,θ1),H)− f i(ϕ(H,θ2),H)∥L2

≤ Li
f∥θ1 − θ2∥2, ∀ (θ1,θ2) ∈ RNϕ ×RNϕ . (13)

Condition C2 of Assumption 1 has the following consequences
on the behavior of E{f(ϕ(H, ·),H)} ≡ f

ϕ
(·).

Proposition 2. (Properties of f
ϕ) Suppose that condition C2

of Assumption 1 is in effect. Then, for every i ∈ N+
NS

, f
ϕ,i

is
Li
f -Lipschitz on RNϕ . Additionally, it is true that

E{|f i(ϕ(H,θ + u),H)|}
≤ Li

f∥u∥2 + E{|f i(ϕ(H,θ),H)|}, (14)

for all (θ,u) ∈ Θ×RNϕ , and for all i ∈ N+
NS

.

Proof of Proposition 2: The first part of the result follows
immediately from condition C2, by the nested structure of Lp-
spaces, and Jensen. The second part follows via an application
of the triangle inequality.

Assumption 1 and Proposition 2 may be further exploited to
establish well-definiteness and basic properties of goµS

, gµS
and

f
ϕ
µR

. To this end, for x ∈ X , µS > 0 and for every i ∈ {o,N+
Ng

},
let us define finite differences

∆i
g(x, µS ,US) ≜

gi(x+ µSUS)− gi(x)

µS

. (15)

Similarly, for θ ∈ Θ, µR > 0 and for every i∈N+
NS

, define

∆i
f (θ, µR,UR,H)

≜
f i(ϕ(H,θ + µRUR),H)− f i(ϕ(H,θ),H)

µR

. (16)

The relevant results now follow.

Lemma 3. (Existence & Properties of goµS
and gµS

) Suppose
that Assumption 1 is in effect. Then, for every i ∈ {o,N+

Ng
} and

for every µS > 0, each giµS
is a well-defined, finite, concave and

everywhere differentiable underestimator of gi on X , such that

sup
x∈X

|giµS
(x)− gi (x)| ≤µSL

i
g

√
NS , (17)

sup
x∈X

E{∥∆i
g(x, µS ,US)US∥

2
2}≤ (Li

g)
2(NS+4)2 (18)

and E{∆i
g(x, µS ,US)US}≡∇giµS

(x) , (19)

for all x ∈ X .

Proof of Lemma 3: Trivial, see Lemma 1 (Section II).

Lemma 4. (Existence & Properties of f
ϕ
µR

) Suppose that
Assumption 1 is in effect. Then, for every i ∈ N+

NS
and for

every µR > 0, each f i
µR

is well-defined, finite and differentiable
everywhere on Θ, such that

sup
θ∈Θ

∣∣fϕ,i

µR
(θ)− f

ϕ,i
(θ)
∣∣≤µRL

i
f

√
Nϕ, (20)

sup
θ∈Θ

E{∥∆i
f (θ, µR,UR,H)UR∥

2
2}≤ (Li

f )
2(Nϕ+4)2 (21)

and E{∆i
f (θ, µR,UR,H)UR}≡∇f

ϕ,i

µR
(θ) , (22)

for all θ ∈ Θ.

Proof of Lemma 4: Fix i ∈ N+
NS

, and consider the function

f
ϕ,i

(·) ≡ E{f i(ϕ(H, ·),H)}, which, by Proposition 2, is Li
f -

Lipschitz on RNϕ . Then, Lemma 1 implies that, for every µR ≥
0,

sup
θ∈Θ

∣∣E{fϕ,i
(θ + µRUR)

}
− f

ϕ,i
(θ)
∣∣ ≤ µRL

i
f

√
Nϕ. (23)

Note that we are not done yet, since E
{
f
ϕ,i

((·) + µRUR)
}

involves an iterated expectation, and not an expectation relative
to the joint distribution of UR and H. However, again by
Proposition 2, it follows that, for every θ ∈ Θ,ˆ

E{|f i(ϕ(H,θ + µRu),H)|}PUR
(du)

≤ µRL
i
f

ˆ
∥u∥2PUR

(du) + E{|f i(ϕ(H,θ),H)|}

≤ µRL
i
f

√
Nϕ + E{|f i(ϕ(H,θ),H)|} < ∞. (24)

Then, Fubini’s Theorem (Corollary 2.6.5 and Theorem 2.6.6 in
[50]) implies that f

ϕ,i

µR
(·) ≡ E{f i(ϕ(H, (·) + µRUR),H)} is

finite on Θ, and that

E
{
f
ϕ,i

(θ + µRUR)
}

≡
ˆ

E{f i(ϕ(H,θ + µRu),H)}PUR
(du)

≡
ˆ

f i(ϕ(H,θ + µRu),H)
[
PH × PUR

]
(d [u,H])

≡ f
ϕ,i

µR
(θ) , ∀θ ∈ Θ, (25)

where H and UR are statistically independent by assumption;
now we are done. Next, differentiability of f

ϕ,i

µR
, as well as the

form of its gradient also follow from Lemma 1 on f
ϕ,i

and, again,
(25). Finally, to verify (21), we may write (due to condition C2)

E{∥∆i
f (θ, µR,UR,H)UR∥

2
2}

≡ 1

µ2
R

E
{
E
{
|f i(ϕ(H,θ + µRUR),H)

−f i(ϕ(H,θ),H)|2|UR

}
∥UR∥

2
2

}
≤ 1

µ2
R

E
{
(Li

f )
2∥µRUR∥

2
2∥UR∥

2
2

}
≤ (Li

f )
2(Nϕ+4)2, (26)

as required. The proof is complete.
Remark 5. We would like to mention that a weaker version
of Lemma 3 holds if we weaken condition C2 of Assumption
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1, by replacing the L2-norm with an L1-norm. In this case,
the ℓ2-norm-squared inside the expectation of (21) would be
replaced by a mere ℓ2-norm; essentially, only boundedness of
∥∆i

f (θ, µR,UR,H)UR∥2 in L1 would be guaranteed, instead
of boundedness in L2. The main reason why (21) (and therefore
condition C2) is desirable is that it crucially affects the behavior
of gradient-based algorithms for solving problems such as (12),
considered later in this work. ■

C. Surrogate Feasibility

We are now in place to investigate conditions ensuring feasi-
bility of the smoothed surrogate (12). In particular, we will be
interested in conditions which ensure feasibility of (12), but are
on the original parameterized problem (2). This is important from
a practical point of view, since the exact form of (12) will be, in
most cases, unknown. On the other hand, feasibility of (2) should
be somehow guaranteed apriori, even in the model-free setting;
indeed, both resource allocation problems (1) and (2) are initially
proposed by the wireless engineer, who is the one responsible for
formulating meaningful resource allocation tasks.

It turns out that all that is needed for (12) to be feasible is
the existence of at least one strictly feasible point for (2). What
is more, (12) can be made strictly feasible at will. The relevant
result follows right after we define the vectors

cS ≜
[
L1
g . . . L

Ng
g

]T
and cR ≜

[
L1
f . . . L

NS

f

]T
, (27)

and under the following assumption.

Assumption 2. The feasibility slack S is increasing around the
origin, and limµR↓0 S(µR) ≡ S(0) ≡ 0.

Theorem 6. (Surrogate Strict Feasibility) Let Assumptions 1
and 2 be in effect, and suppose that (x†,θ†) ∈ RNS ×RNϕ is
a strictly feasible point of the parameterized problem (2). Then
there exist µ†

S > 0 and µ†
R > 0, possibly dependent on (x†,θ†),

such that, for every 0 ≤ µS ≤ µ†
S and 0 ≤ µR ≤ µ†

R, the same
point (x†,θ†) is strictly feasible for the smoothed surrogate (12).

Proof of Theorem 6: Let the point (x†,θ†) ∈ RNS ×RNϕ be
strictly feasible for (2), implying that (x†,θ†) ∈ X ×Θ, and

g(x†) ≥ s
†
g and f

ϕ
(θ†)− x† ≥ s

†
f , (28)

for some positive slacks s
†
g ∈ R

Ng

++ and s
†
f ∈ R

NS
++. Also, from

Lemma 3, it follows that, for every µS ≥ 0 and µR ≥ 0,

g(x†) ≤ gµS
(x†) + µScS

√
NS and (29)

f
ϕ
(θ†) ≤ f

ϕ
µR

(θ†) + µRcR
√
Nϕ, (30)

Consequently, it is true that

gµS
(x†) ≥ s

†
g − µScS

√
NS and (31)

f
ϕ
µR

(θ†)− x† ≥ s
†
f − µRcR

√
Nϕ. (32)

Therefore, we can find µ†
S > 0 and µ†

R > 0 sufficiently small
but strictly positive, such that, for every 0 ≤ µS ≤ µ†

S and 0 ≤
µR ≤ µ†

R, the strict inequalities s
†
g − µScS

√
NS > 0 and s

†
f −

µRcR
√
Nϕ > S(µR) hold. This, of course, implies that (x†,θ†)

is a strictly feasible point for problem (12), for all aforementioned
choices of µS and µR.

Theorem 6 is important, as it confirms the existence of a strictly
feasible point for problem (12), uniformly relative to µS and µR,
the latter being allowed to vary in appropriate sets, whose length
is controlled by the feasibility of (2) and the feasibility slack of
(12). An evident byproduct of Theorem 6 is that (12) is a feasible
and, therefore, meaningful optimization problem.

Another similar question we may ask is how much the con-
straints of (2) are violated for every feasible solution of (12). In
this respect, we may formulate the following result.

Theorem 7. (PFA Constraint Violation) Let Assumption 1 be
in effect. Then, for every µR ≥ 0 such that

S(µR)− µRcR
√

Nϕ ≥ 0, (33)

and for every µS ≥ 0, every feasible point of (12) is also feasible
for (2). Otherwise, if (33) fails to hold, then the negative values of
its left-hand-side correspond to the respective levels of maximal
constraint violation for (2).

Proof of Theorem 7: Fix qualifying µS and µR, and let the point
(xµS ,θµR) ∈ RNS ×RNϕ be feasible for problem (12). Then,
it is in fact true that (xµS ,θµR) ∈ X ×Θ, whereas from Lemma
3 it follows that

g(xµS ) ≥ gµS
(xµS ) ≥ 0 and (34)

f
ϕ
(θµR)− xµS + µRcR

√
Nϕ ≥ f

ϕ
µR

(θµR)− xµS

≥ S(µR). (35)

Rearranging the second inequality, we obtain

f
ϕ
(θµR)− xµS ≥ S(µR)− µRcR

√
Nϕ, (36)

where the right-hand-sides are independent of the feasible point
(xµS ,θµR). The result now readily follows.

It would be useful to note that if S is such that condition (33) is
satisfied for all qualifying µR, then feasibility of (2) is ensured
uniformly relative to the choice of µR (and µS). This means
that, whenever a solution to (12) is determined, this solution will
automatically satisfy the original resource constraints of the initial
parameterized problem (2).

Another important observation is that Theorems 6 and 7 are not
exclusive; in other words, they can hold simultaneously. Indeed,
the former concerns choosing µS and µR, whereas the latter
concerns choosing the slack S, which is a function µR, in a way
which is compatible with Assumption 2.

As an example, one can set S(µR) ≡ µRcR
√
Nϕ, where S

readily satisfies Assumption 2. However, this might not be a
feasible choice in practice, since the entries of cR will probably
be unknown. Still, Theorem 7 provides a basic principle for
choosing S. For instance, the choice S(µR) ≡ CµR

√
Nϕ would

work fine, for an appropriate constant vector C > 0, which
may chosen experimentally. This last point also highlights the
operational importance of Theorem 7.

IV. LAGRANGIAN DUALITY

A promising approach for dealing with the explicit constraints
of either problems (2) or (12) is by exploiting Lagrangian Dual-
ity, which has been proven essential and undoubtedly important in
analyzing and efficiently solving constrained convex optimization
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problems; see, e.g., [51]–[53]. Note, however, that, since both
problems (2) and (12) are typically nonconvex, most standard
results in Lagrangian Duality for convex optimization do not
apply automatically.

Instead, our treatment will be based on recent results reported
in [23], which in turn rely on earlier results reported in [1].
In particular, the purpose of this section is to explicitly link
the smoothed surrogate (12) to the parameterized problem (2),
and ultimately to the base policy search problem (1), in the
dual domain, effectively characterizing the respective duality
gaps. Our results essentially provide a technically grounded path
to dealing with the constrained problem (1) in the model-free
setting, through the zeroth-order proxy (12).

To this end, consider the Lagrangian function Lϕ : RNS ×
RNϕ ×RNg ×RNS → R defined as

Lϕ(x,θ,λ) ≜ go(x) + ⟨λS ,g(x)⟩+
〈
λR, f

ϕ
(θ)− x

〉
, (37)

where λ ≡ (λS ,λR) ∈ RNg × RNS are multipliers associated
with the respective constraint of the primal problem (2). Then
the dual function Dϕ : RNg ×RNS → (−∞,∞] is defined as

Dϕ(λ) ≜ sup
(x,θ)∈X×Θ

Lϕ(x,θ,λ). (38)

Since it is true that P∗
ϕ ≤ Dϕ on R

Ng

+ × R
NS
+ , it is most

reasonable to consider the dual problem

minimize Dϕ(λ)

subject to λ ≥ 0
, (39)

whose optimal value

D∗
ϕ ≜ inf

λ≥0
Dϕ(λ) ∈ (−∞,∞] (40)

serves as the tightest over-estimate of the optimal value of (2),
P∗

ϕ, when knowing only Dϕ.
In the same fashion, for µS > 0 and µR > 0, we define the

Lagrangian function Lµ : X ×Θ×RNg ×RNS → R associated
with the smoothed surrogate (12) as

Lϕ,µ(x,θ,λ) ≜ goµS
(x) +

〈
λS ,gµS

(x)
〉

+
〈
λR, f

ϕ
µR

(θ)− x− S(µR)
〉
, (41)

whereas the dual function Dϕ,µ : RNg ×RNS → (−∞,∞] and
corresponding dual infimal value are

Dϕ,µ(λ) ≜ sup
(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ) and (42)

D∗
ϕ,µ ≜ inf

λ≥0
Dϕ,µ(λ) ∈ (−∞,∞], (43)

respectively. Note that the both Dϕ and Dϕ,µ are convex on
RNg × RNS , as pointwise suprema of affine functions. In our
analysis, we will exploit another basic assumption, as follows.

Assumption 3. Problem (2) is strictly feasible.

Under Assumption 3, it is true that the base problem (1) is
strictly feasible as well; its feasible set contains that of (2).

A. Dual Optimal Values

Our first task will be to explicitly relate the optimal dual values
D∗

ϕ and D∗
ϕ,µ. To do so, we develop and exploit the following

technical results.

Lemma 8. (Lagrangian Approximation) Let Assumption 1 be
in effect, and for every µS ≥ 0 , µR ≥ 0 and λ ≥ 0, define the
nonnegative quantities

Γl
µ(λ) ≜ µSL

o
g

√
NS + µS

〈
λS , cS

〉√
NS

+ µR

〈
λR, cR

〉√
Nϕ +

〈
S(µR),λR

〉
, and (44)

Γr
µ(λ) ≜ µR

〈
λR, cR

〉√
Nϕ −

〈
S(µR),λR

〉
. (45)

Then, for every (x,θ) ∈ X ×Θ, it is true that

−Γl
µ(λ) ≤ Lϕ,µ(x,θ,λ)− Lϕ(x,θ,λ) ≤ Γr

µ(λ). (46)

Proof of Lemma 8: Let µS ≥ 0 and µR ≥ 0. Since Assumption
1 is in effect, Lemma 3 implies that, for every (x,θ,λ) ∈ X ×
Θ×R

Ng

+ ×R
NS
+ ,

Lϕ,µ(x,θ,λ)

≡ goµS
(x) +

〈
λS ,gµS

(x)
〉
+
〈
λR, f

ϕ
µR

(θ)− x− S(µR)
〉

≤ go(x) + ⟨λS ,g(x)⟩+
〈
λR, f

ϕ
(θ)− x

〉
+
〈
λR, µRcR

√
Nϕ − S(µR)

〉
≡ Lϕ(x,θ,λ) + Γr

µ(λ). (47)

By symmetry, a similar argument is possible for Lϕ, namely,

Lϕ(x,θ,λ)

≡ go(x) + ⟨λS ,g(x)⟩+
〈
λR, f

ϕ
(θ)− x

〉
≤ goµS

(x) +
〈
λS ,gµS

(x)
〉
+
〈
λR, f

ϕ
µR

(θ)− x− S(µR)
〉

+ µSL
o
g

√
NS +

〈
λS , µScS

√
NS

〉
+
〈
λR, µRcR

√
Nϕ

〉
+
〈
λR, S(µR)

〉
≡ Lϕ,µ(x,θ,λ) + Γl

µ(λ). (48)

Rearranging (47) and (48) gives the result.

Lemma 9. (Dual Functions are Proper & Closed) As long
as D∗

ϕ < ∞, the dual function Dϕ is proper and closed. If,
additionally, Assumption 1 is in effect, then, for every µS > 0
and µR > 0, the smoothed dual function Dϕ,µ is also proper
and closed.

Proof of Lemma 9: Since D∗
ϕ < ∞, there exists a dual feasible

point λ‡ ≥ 0 such that Dϕ(λ
‡) < ∞, whereas the fact that

Lϕ is real-valued on its domain implies that Dϕ > −∞ on
RNg ×RNS . Then Dϕ is proper, by definition (p. 7 in [53]).

To show that Dϕ is also closed, it suffices to observe that it
is the pointwise supremum of affine functions, each of which is
continuous (thus lower semicontinuous) on the closed set RNg ×
RNS , and, therefore, closed (Proposition 1.1.3 in [53]). Then Dϕ

must be closed, by ([53], Proposition 1.1.6).
If now Assumption 1 is in effect, then for the same dual

feasible point λ‡ as above, and for every (x,θ) ∈ X×Θ, Lemma
8 implies that

Lϕ,µ(x,θ,λ
‡) ≤ Lϕ(x,θ,λ

‡) + Γr
µ(λ

‡). (49)



KALOGERIAS ET AL.: MODEL-FREE LEARNING OF OPTIMAL ERGODIC POLICIES IN WIRELESS SYSTEMS 7

Therefore, it follows that

Dϕ,µ(λ
‡) ≡ sup

(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ
‡)

≤
[

sup
(x,θ)∈X×Θ

Lϕ(x,θ,λ
‡)

]
+ Γr

µ(λ
‡)

≡ Dϕ(λ
‡) + Γr

µ(λ
‡) < ∞. (50)

As before, Lϕ,µ is real-valued on its domain, thus Dϕ,µ > −∞
everywhere on RNg ×RNS , showing that Dϕ,µ is proper. Lastly,
closeness of Dϕ,µ follows by the same argument as that for Dϕ,
above.

Lemma 10. (Existence of Dual Optimal Solutions) Suppose
that D∗

ϕ < ∞, and let Assumption 3 be in effect. Then, the set
of dual optimal solutions argminλ≥0 Dϕ(λ) is nonempty and
compact in R

Ng

+ × R
NS
+ . If, additionally, Assumptions 1 and 2

are in effect, then there exist µ†
S > 0 and µ†

R > 0, such that,
for every 0 < µS ≤ µ†

S and 0 < µR ≤ µ†
R, the solution

set argminλ≥0 Dϕ,µ(λ) is a nonempty and compact subset of
R

Ng

+ ×R
NS
+ , as well.

Proof of Lemma 10: For any point (x†,θ†) ∈ RNS × RNϕ ,
which is strictly feasible for (2), it is true that g(x†) > 0 and
f
ϕ
(θ†)− x† > 0. Then, for every λ ≥ 0, we have

Lϕ(x
†,θ†,λ) ≤ Dϕ(λ), (51)

where the left-hand-side is non-trivially affine in λ. Now,
consider any sequence {λn}n∈N ⊆ R

Ng

+ × R
NS
+ , such that

limn→∞ ∥λn∥2 ≡ ∞. Since Lϕ(x
†,θ†, ·) is a non-trivial affine

function and with positive slope, we may write

lim inf
n→∞

Dϕ(λ
n) ≥ lim inf

n→∞
Lϕ(x

†,θ†,λn)

≡ lim
n→∞

Lϕ(x
†,θ†,λn) ≡ ∞, (52)

which in turn yields

lim inf
n→∞

Dϕ(λ
n) ≡ ∞ =⇒ lim

n→∞
Dϕ(λ

n) ≡ ∞. (53)

Noting that Dϕ is proper due to D∗
ϕ being finite by assumption

and Lemma 9, it is straightforward to show that the clipped dual
function D̃ϕ : RNg ×RNS → (−∞,∞] defined as

D̃ϕ(λ) ≜

{
Dϕ(λ), if λ ≥ 0

∞, otherwise
(54)

is proper and coercive (p. 119 in [53]). Since, also by Lemma 9,
Dϕ is closed, it follows that D̃ϕ is closed as well (as a sum of
proper closed functions: Dϕ itself and the indicator of R

Ng

+ ×
R

NS
+ ; see ([53], Proposition 1.1.5)). Thus, we may call ([53],

Proposition 3.2.1), which ensures that argminλ≥0 Dϕ(λ) is a
nonempty and compact set in R

Ng

+ ×R
NS
+ .

Next, whenever Assumptions 1 and 2 are in effect, Theorem
6 ensures the existence of strictly positive numbers µ†

S > 0 and
µ†
R > 0, possibly dependent on (x†,θ†), such that, for every

0 < µS ≤ µ†
S and 0 < µR ≤ µ†

R, the particular point (x†,θ†)
is also strictly feasible for problem (12). Then, with the help of
the respective part of Lemma 9, the procedure presented above

for (2) may be repeated for (12), for each pair of qualifying µS

and µR.

Lemma 11. (Uniform Boundedness of Dual Solution Sets) Let
Assumptions 1, 2 and 3 be in effect, and suppose that D∗

ϕ < ∞.
Then, for the same µ†

S > 0 and µ†
R > 0 of Lemma 10, there is a

compact set Λ† ⊆ R
Ng

+ ×R
NS
+ , such that, for every 0 ≤ µS ≤ µ†

S

and 0 ≤ µR ≤ µ†
R,

arg minλ≥0Dϕ,µ(λ) ⊆ Λ†,

provided that S is continuous on [0, µ†
R]. It is then true that

sup
µS∈[0,µ

†
S ],µR∈[0,µ

†
R]

[
λ∗
S(µS , µR)

λ∗
R(µS , µR)

]
< ∞,

where the supremum is taken element-wise.

Proof of Lemma 11: Let us first show that Dϕ,µ(λ) is jointly
(pointwise) continuous in (λ, µ) ∈ R

Ng

+ ×R
NS
+ ×R2

+. Similar
to the conclusions of Lemmata 3 and 4, it is easy to verify that,
for every µ1 ≥ 0 and µ2 ≥ 0,

sup
x∈X

|gi
µ
1(x)− gi

µ
2(x)| ≤ |µ1 − µ2|Li

g

√
NS , i∈ {o,N+

Ng
} (55)

sup
θ∈Θ

∣∣fϕ,i

µ
1 (θ)− f

ϕ,i

µ
2 (θ)

∣∣ ≤ |µ1 − µ2|Li
f

√
Nϕ, i∈N+

NS
. (56)

Fix an arbitrary pair λo = (λo
S ,λ

o
R) ≥ 0 and µo = (µo

S , µ
o
R) ≥

0. For every other choice (λ, µ) ≥ 0, we have the estimates

|Dϕ,µ(λ)− Dϕ,µ
o(λo)|

= |Dϕ,µ(λ)− Dϕ,µ
o(λ)|+ |Dϕ,µ

o(λ)− Dϕ,µ
o(λo)|. (57)

Additionally, we may write

|Dϕ,µ(λ)− Dϕ,µ
o(λ)|

=

∣∣∣∣ sup
(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ)− sup
(x,θ)∈X×Θ

Lϕ,µ
o(x,θ,λ)

∣∣∣∣
≤ sup

(x,θ)∈X×Θ

|Lϕ,µ(x,θ,λ)− Lϕ,µ
o(x,θ,λ)|. (58)

Now, we have

|Lϕ,µ(x,θ,λ)− Lϕ,µ
o(x,θ,λ)| (59)

≤ |goµS
(x)− goµo

S
(x)|+ |⟨λS ,gµS

(x)− gµ
o
S
(x)⟩|

+ |⟨λR, f
ϕ
µR

(θ)− f
ϕ

µ
o
R
(θ)⟩|+ |⟨λR, S(µR)− S(µo

R)⟩|
≤ |µS − µo

S |L
o
g + |µS − µo

S |⟨λS , cS⟩
√
NS

+ |µR − µo
R|⟨λR, cR⟩

√
Nϕ + ∥λR∥2∥S(µR)− S(µo

R)∥2.

Together with the continuity of the slack S and that of the dual
function Dϕ,µ(·) for each µ –due to convexity, also note that µo

is fixed–, we obtain that

lim
(λ,µ)→(λ

o
,µ

o
)
|Dϕ,µ(λ)− Dϕ,µo

(λo)| = 0, (60)

which verifies continuity of Dϕ,·(•) on R
Ng

+ ×R
NS
+ ×R2

+.
Utilizing Lemma 10, we now consider the nonempty and

compact-valued solution set multifunction Λ∗ : R2
+ ⇒ R

Ng

+ ×
R

NS
+ defined for convenience as

Λ∗(µ) ≜ arg minλ≥0Dϕ,µ(λ), µ ≥ 0, (61)
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and let M ≜ [0, µ†
S ]×[0, µ†

R]. Let us establish some facts. First, it
is easy to see that Dϕ,·(•) is uniformly bounded from below on
R

Ng

+ ×R
NS
+ ×M. Indeed, because of strict feasibility for every

µ ∈ M, we may write

Dϕ,µ(λ) = sup
(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ)

≥ Lϕ,µ(x
†,θ†,λ)

≥ goµS
(x†)

≥ go(x†)− µSL
o
g

√
NS

≥ go(x†)− µ†
SL

o
g

√
NS , (62)

which of course implies that infλ≥0,µ∈M Dϕ,µ(λ) is a number.
Second, we can find a sequence of {Kn}n of compact subsets
increasing to R

Ng

+ ×R
NS
+ ×M, for which

lim
n→∞

inf
(λ,µ)∈

[
R

Ng
+ ×RNS

+ ×M
]
\Kn

Dϕ,µ(λ) = +∞. (63)

For instance, we can take Kn = [0, n]Ng+NS ×M, n ∈ N. Then[
R

Ng

+ ×R
NS
+ ×M

]
\Kn is empty, and minimizing over the empty

set returns +∞. It is then said that Dϕ,·(•) satisfies the moment
condition on R

Ng

+ ×R
NS
+ ×M ([54], Section 3). Third, it follows

that Dϕ,·(•) is inf-compact on R
Ng

+ ×R
NS
+ ×M, i.e., the restricted

sub-level set multifunction

S(r, µ) ≜ {λ ≥ 0|Dϕ,µ(λ) ≤ r}, (µ, r) ∈ M× r (64)

is compact-valued. To see this, observe that we can write, for
every µ ∈ M and r ∈ R,

S(r, µ) = {λ ∈ RN |D̃ϕ,µ(λ) ≜ Dϕ,µ(λ) + IR+
(λ) ≤ r}, (65)

and because D̃ϕ,µ(·) is coercive for each µ ∈ M (see also proof
of Lemma 10), the claim follows. Therefore, from ([54], Theorem
3.1), we obtain that the parameterized optimal dual value

D∗
ϕ(µ) = inf

λ≥0
Dϕ,µ(λ), µ ∈ M (66)

is continuous, and that the compact-valued multifunction Λ∗ is
upper hemicontinuous. Consequently, by the latter conclusion,
the image of the compactum M under Λ∗ (i.e., the range of Λ∗

on M), defined as ([55], Section 17.1)

Λ† ≜
⋃
µ∈M

Λ∗(µ), (67)

is also a compact subset of R
Ng

+ × R
NS
+ ([55], Lemma 17.8).

This further implies that

sup
µ∈M

λ∗(µ) = sup
(µS ,µR)∈M

λ∗(µS , µR)

= sup
(µS ,µR)∈M

[
λ∗
S(µS , µR)

λ∗
R(µS , µR)

]
< ∞, (68)

where λ∗(·) ∈ Λ∗(·) ⊆ Λ† is any selection of Λ∗ on M, and
where the supremum is taken in an element-wise manner.

Out of Lemmata 8, 9, 10 and 11, the first and the penultimate
ones are the most important. In particular, Lemma 8 provides
explicit non-symmetric upper and lower bounds for the difference
between the Lagrangians of (2) and (12), which are independent

of x and θ. Therefore, it should be possible to obtain approxi-
mation bounds on the respective dual functions, uniform relative
to (x,θ). On top of this, Lemma 10 verifies the existence of
dual optimal solutions for (2) and (12), which could be exploited
in conjunction with the aforementioned uniform bounds on the
respective dual functions, to provide fundamental upper and lower
bounds on the corresponding dual optimal (infimal) values. All
this is confirmed and rigorously quantified by the next central
result.

Theorem 12. (Dual Value Approximation) Let Assumptions 1,
2 and 3 be in effect, and suppose that D∗

ϕ < ∞. Then there exist
µ†
S > 0 and µ†

R > 0, such that, for every 0 ≤ µS ≤ µ†
S and

0 ≤ µR ≤ µ†
R,

−Γl
µ(λ

†
ϕ) ≤ −Γl

µ(λ
∗
ϕ,µ) ≤ D∗

ϕ,µ − D∗
ϕ ≤ Γr

µ(λ
∗
ϕ). (69)

where λ∗
ϕ,µ ∈ argminλ≥0 Dϕ,µ(λ), D∗

ϕ,0 ≡ D∗
ϕ and λ∗

ϕ,0 ≡
λ∗
ϕ, identically, and where λ†

ϕ ≥ 0 is a constant independent of
µS and µR, which is finite if S is continuous on [0, µ†

R]. Further,
if S(µR) ≡ CµR

√
Nϕ,C ≥ 0, then there always exist finite

constants Σl
S ≥ 0, Σl

R ≥ 0 and Σr
R ∈ R, problem dependent but

independent of µS and µR, such that

−(µSΣ
l
S + µRΣ

l
R) ≤ D∗

ϕ,µ − D∗
ϕ ≤ µRΣ

r
R. (70)

In particular, Σl
S , Σl

R and Σr are defined as

Σl
S ≜

(
Lo
g +

〈
λ†
ϕ,S , cS

〉)√
NS , (71)

Σl
R ≜

〈
λ†
ϕ,R, cR +C

〉√
Nϕ and (72)

Σr
R ≜

〈
λ∗
ϕ,R, cR −C

〉√
Nϕ. (73)

Lastly, whenever S(µR) ≡ CµR

√
Nϕ with C ≥ cR, then the

right-hand-sides of (69) and (70) are nonpositive, and may be
replaced by zero.

Proof of Theorem 12: Under the assumptions of the the-
orem, Lemma 10 ensures that the dual optimal solution set
argminλ≥0 Dϕ,µ(λ) is nonempty, for all 0 ≤ µS ≤ µ†

S and
0 ≤ µR ≤ µ†

R. Consequently, there exist optimal multipliers
λ∗
ϕ,µ ≥ 0, such that

−∞ < Dϕ,µ(λ
∗
ϕ,µ) ≡ D∗

ϕ,µ ≡ inf
λ≥0

Dϕ,µ(λ), (74)

for all allowable values of µS and µR. Therefore, invoking
Lemma 8, we may carefully write

D∗
ϕ,µ ≤ Dϕ,µ(λ

∗
ϕ)

≡ sup
(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ
∗
ϕ)

≤
[

sup
(x,θ)∈X×Θ

Lϕ(x,θ,λ
∗
ϕ)

]
+ Γr

µ(λ
∗
ϕ)

≡ Dϕ(λ
∗
ϕ) + Γr

µ(λ
∗
ϕ)

≡ D∗
ϕ + Γr

µ(λ
∗
ϕ). (75)

By symmetry, we also have

D∗
ϕ ≤ Dϕ(λ

∗
ϕ,µ)

≡ sup
(x,θ)∈X×Θ

Lϕ(x,θ,λ
∗
ϕ,µ)
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≤
[

sup
(x,θ)∈X×Θ

Lϕ,µ(x,θ,λ
∗
ϕ,µ)

]
+ Γl

µ(λ
∗
ϕ,µ)

≡ Dϕ,µ(λ
∗
ϕ,µ) + Γl

µ(λ
∗
ϕ,µ)

≡ D∗
ϕ,µ + Γl

µ(λ
∗
ϕ,µ). (76)

Rearranging (75) and (76), we obtain the last three inequalities
of (69) (left-to-right), as in the statement of the theorem.

Now, recalling that λ∗
ϕ,µ ≡ (λ∗

ϕ,S(µS , µR),λ
∗
ϕ,R(µS , µR)),

we may invoke Lemma 11 to define maximal multipliers (here
the supremum is taken elementwise on the involved vectors)

λ†
ϕ,S ≜ sup

µS∈[0,µ
†
S ],µR∈[0,µ

†
R]

λ∗
ϕ,S(µS , µR), and (77)

λ†
ϕ,R ≜ sup

µS∈[0,µ
†
S ],µR∈[0,µ

†
R]

λ∗
ϕ,R(µS , µR). (78)

Using these definitions, it follows that, for every 0 ≤ µS ≤ µ†
S

and 0 ≤ µR ≤ µ†
R,

Γl
µ(λ

∗
ϕ,µ) ≤ Γl

µ(λ
†
ϕ), (79)

verifying the left inequality of (69).
When S(µR) ≡ CµR

√
Nϕ,C ≥ 0, the rest of the claims

stated in the theorem follow by noting that, for every λ ≥ 0,

Γl
µ(λ) ≜ µS

(
Lo
g +

〈
λS , cS

〉)√
NS

+ µR

(〈
λR, cR

〉
+
〈
C,λR

〉)√
Nϕ and (80)

Γr
µ(λ) ≜ µR

(〈
λR, cR

〉
−
〈
C,λR

〉)√
Nϕ,

where both functions Γl
(·) and Γr

(·) are nondecreasing in both µS

and µR. If, additionally, C ≥ cR, then Γr
(·) ≤ 0. The proof is

complete.

B. Approximate Strong Duality

After explicitly relating the dual optimal values D∗
ϕ and D∗

ϕ,µ,
our second task will be to relate D∗

ϕ,µ to the optimal value of
the base problem (1). In particular, we would like to characterize
the duality gap between the primal problem (1) and the dual to
problem (12). Note that we are not interested in characterizing the
duality gap of (12); to the best of our knowledge, this constitutes
a nontrivial problem.

Following [23], we exploit the notion of a ϵ-universal policy
parameterization. This allows us to characterize the intermediate
duality gap between the optimal value of (1), and the optimal
value of the dualization of (12) [23].

Definition 13. (ϵ-Universality) Fix ϵ ≥ 0, choose a parameteri-
zation ϕ :H×RNϕ→RNR , and let Θ⊆RNϕ be any parameter
subspace. A class of admissible policies

Pϕ
Θ ≜ {p ∈ P |p(·) ≡ ϕ(·,θ), θ ∈ Θ} ⊆ P (81)

is called ϵ-universal in P if and only if, for every p ∈ P , there
exists ϕ(·,θ ≡ θ(ϵ,p)) ∈ Pϕ

Θ , such that

E{∥p(H)− ϕ(H,θ)∥∞} < ϵ. (82)

Remark 14. Note that, when Θ ⊆
{
θ ∈ RNϕ

∣∣ϕ(·,θ) ∈ P
}

,
as assumed in Section I, it follows that Pϕ

Θ ≡{ϕ(·,θ)|θ ∈ Θ}.
Then, trivially, ϕ(·,θ)∈Pϕ

Θ , for all θ ∈ Θ, and ϵ-universality of

Pϕ
Θ (or ϕ, simply) in P is ensured as long as, for every admissible

policy p ∈ P , there is at least one θ ∈ Θ satisfying (82). ■
Additionally, also as in [23], we will impose the following

additional structural assumptions.

Assumption 4. The Borel pushforward MH : B(H) → [0, 1] is
nonatomic: For every Borel set E ∈ B(H) such that MH(E) > 0,
there exists another Borel set Eo ∈ B(H) satisfying MH(E) >
MH(Eo) > 0.

Assumption 5. For every pair (x,x′) ∈ X×X such that x ≤ x′,
it is true that go(x) ≤ go(x′) and g(x) ≤ g(x′).

Assumption 6. There exists a number Lf
P < ∞, such that, for

every pair (p,p′) ∈ P × P , it is true that

∥E{f(p(H),H)} − E{f(p′(H),H)}∥∞
≤ Lf

PE{∥p(H)− p′(H)∥∞}. (83)

As clearly explained in ([23], Section III.A), Assumptions 4,
5 and 6 are reasonable and are fulfilled by most practically
significant wireless resource allocation problems. We thus do not
further comment.

Under Assumptions 3, 4, 5 and 6, an important result was
presented in [23], which characterizes the duality gap between the
base problem (1) and the parameterized surrogate (2), leveraging
the notion of ϵ-universality of Definition 13. For completeness,
we also report this result here, as follows.

Theorem 15. (PFA Duality Gap [23]) Let Assumptions 3, 4,
5 and 6 be in effect, and suppose that, for some ϵ ≥ 0, ϕ is
ϵ-universal in P . Then it is true that D∗

ϕ < ∞ and, further,

−∥λ∗∥Lf
Pϵ ≤ D∗

ϕ − P∗ ≤ 0, (84)

where λ∗ ∈ argminλ≥0 D(λ) ̸= ∅, and D : RNg × RNS →
(−∞,∞] denotes the dual function of the base problem (1).

We now combine Theorem 15 with Theorem 12 developed in
Section IV-A, resulting in the main result of this paper. The proof
is elementary, and thus omitted.

Theorem 16. (Smoothed PFA Duality Gap) Let Assumptions
1, 2, 3, 4, 5 and 6 be in effect, and suppose that, for some ϵ ≥ 0,
ϕ is ϵ-universal in P . Then, by the definitions of Lemma 8 and
Theorem 12, there exist µ†

S > 0 and µ†
R > 0, such that, for every

0 ≤ µS ≤ µ†
S and 0 ≤ µR ≤ µ†

R,

−
(
Γl
µ(λ

∗
ϕ,µ)+∥λ∗∥Lf

Pϵ
)
≤D∗

ϕ,µ−P∗≤Γr
µ(λ

∗
ϕ), (85)

with Γl
µ(λ

∗
ϕ,µ) ≤ Γl

µ(λ
†
ϕ). Further, if S(µR) ≡ CµR

√
Nϕ, C ≥

0, it is true that

−(µSΣ
l
S+µRΣ

l
R+∥λ∗∥Lf

Pϵ)≤D∗
ϕ,µ−P∗≤µRΣ

r
R. (86)

Lastly, whenever S(µR) ≡ CµR

√
Nϕ with C ≥ cR, then the

right-hand-sides of (85) and (86) are nonpositive, and may be
replaced by zero.

We may also state a trivial corollary to Theorem 16, masking
all its technicalities, which sometimes might be unnecessary in
more qualitative arguments.
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Algorithm 1 Model-Free Randomized Primal-Dual Learning

Input: x0, θ0, λ0
S , λ0

R, {γn
x , γ

n
θ , γ

n
λS

, γn
λR

}n∈N, µS , µR

Output: {xn+1,θn+1}n∈N
1: for n = 0, 1, 2, . . . do
2: Draw samples Un+1

S and Un+1
R .

3: Sample values

go(xn), go(xn+µSU
n+1
S ) and

g(xn), g(xn+µSU
n+1
S ),

and probe the wireless system to obtain

f(ϕ(Hn+1,θn),Hn+1) and

f(ϕ(Hn+1,θn+µRU
n+1
R ),Hn+1).

4: Compute xn+1 and θn+1 from (98) and (99).
5: Sample g(xn+1 +µSU

n+1
S ) and probe the wireless system

to obtain f(ϕ(Hn+1,θn+1+µRU
n+1
R ).

6: Compute λn+1
S and λn+1

R from (100) and (101).
7: end for

Corollary 17. (Smoothed PFA Duality Gap | Simplified) Let
Assumptions 1, 2, 3, 4, 5 and 6 be in effect and suppose that,
for some ϵ ≥ 0, ϕ is ϵ-universal in P . Further, choose S(µR) ≡
CµR

√
Nϕ,C ≥ 0. Then, it is true that∣∣D∗

ϕ,µ − P∗∣∣ ≡ O(µS + µR + ϵ), (87)

as (µS , µR, ϵ) ↓ 0 . If, further, C ≥ cR, (87) may be improved
as

0 ≤ P∗ − D∗
ϕ,µ ≡ O(µS + µR + ϵ), (88)

as (µS , µR, ϵ) ↓ 0 .

Theorem 16 and Corollary 17 explicitly quantify the gap
between dual optimal value of the smoothed surrogate (12) and
the (primal) optimal value of the constrained variational problem
(1). What is more, the gap can be made arbitrarily small at will,
and scales linearly relative to the near-universality precision ϵ,
and the smoothing parameters µS and µR.

The importance of Theorem 16 and Corollary 17 is twofold.
First, similarly to [23] and together with Theorems 6 and 7,
Theorem 16 and Corollary 17 provide solid technical evidence
justifying the dualization of (12) as a proxy for obtaining the
optimal value of (1), and a corresponding optimal solution. This
very useful per se, since the dual problem embeds the constraints
of (12) in its objective, via the Lagrangian formulation.

Second, and most importantly, solving for (12) in the dual
domain can be performed in a gradient-free fashion, using only
evaluations of the functions present in both the objective and
constraints of (12), as we discuss next. This makes optimal
wireless resource allocation in the model-free setting possible,
within a non-heuristic and predictable framework.

V. PRIMAL-DUAL MODEL-FREE LEARNING

We now present a simple and efficient zeroth-order randomized
primal-dual algorithm for dealing directly with the smoothed
surrogate (12) in the model-free setting. The algorithm is non-
heuristic and derived from first principles, and uses stochastic
approximation to tackle the minimax problem

minimize sup(x,θ)∈X×Θ Lϕ,µ(x,θ,λ)

subject to λ ≥ 0
, (89)

for every qualifying choice of µS and µR.
Apparently, a basic primal-dual method for solving (89) may

be easily derived by taking gradients relative to all of its variables,
and then performing alternating gradient steps in appropriate
directions. Specifically, for every (x,θ) ∈ X ×Θ and for every
λ ≡ (λS ,λR) ≥ 0, the gradients of Lϕ,µ with respect to each
of its arguments may be readily expressed as

∇xLϕ,µ(x,θ,λ) ≡ ∇goµS
(x) +∇gµS

(x)λS − λR, (90)

∇θLϕ,µ(x,θ,λ) ≡ ∇f
ϕ
µR

(θ)λR, (91)

∇λS
Lϕ,µ(x,θ,λ) ≡ gµS

(x) and (92)

∇λR
Lϕ,µ(x,θ,λ) ≡ f

ϕ
µR

(θ)− x− S(µR). (93)

Then, the idea is to iteratively ascend in (x,θ) and descend in
λ, in an alternating fashion. If n ∈ N denotes an iteration index,
this implies the updates

xn+1≡ΠX
{
xn+γn

x ◦ (∇goµS
(xn)+∇gµS

(xn)λn
S−λn

R)
}
, (94)

θn+1≡ΠΘ

{
θn+γn

θ ◦ ∇f
ϕ
µR

(θn)λn
R

}
, (95)

λn+1
S ≡ (λn

S−γn
λS

◦ gµS
(xn+1))+ and (96)

λn+1
R ≡

(
λn
R−γn

λS
◦
(
f
ϕ
µR

(θn+1)−xn+1−S(µR)
))

+
, (97)

where “◦” denotes the Hadamard product operation, {γn
x}n∈N,

{γn
θ}n∈N, {γn

λS
}n∈N and {γn

λR
}n∈N are nonnegative vector

stepsize sequences, ∇gµS
: RNS → RNS × RNg and ∇f

ϕ
µR

:

RNϕ → RNϕ ×RNS are corresponding Jacobians and, for every
nonempty closed set A ⊆ RN , ΠA : RN → A is the usual
Euclidean projection operator.

We may observe that the algorithm described by (94), (95),
(96) and (97) is in general not implementable. This is because
neither the functions goµS

, gµS
and f

ϕ
µR

(in general), nor their
gradients are explicitly known apriori, for any possible values of
µS > 0 and µR > 0 .

Nevertheless, by Lemma 3 from Section II (assuming that
the respective assumptions are satisfied), all three functions goµS

,

gµS
, f

ϕ
µR

, and their derivatives are given by known expectation
functions. What is more, all these expectation functions depend
exclusively on zeroth-order information, that is, on evaluations
of goµS

, gµS
and f

ϕ
µR

, only. Therefore, given standard Gaussian
iid sequences {Un

S}n∈N+ , {Un
S}n∈N+ , together with a channel

state observable sequence {Hn}
n∈N+ , all mutually independent

of each other, a (zeroth-order) stochastic gradient version of the
algorithm consisting of (94), (95), (96) and (97) may be readily
formulated by replacing all involved expectations as

xn+1≡ΠX
{
xn+γn

x ◦ (∆o
g(x

n, µS ,U
n+1
S )Un+1

S

+⟨∆g(x
n, µS ,U

n+1
S ),λn

S⟩U
n+1
S −λn

R)
}
, (98)

θn+1≡ΠΘ

{
θn

+γn
θ ◦⟨∆f (θ

n, µR,U
n+1
R ,Hn+1),λn

R⟩U
n+1
R

}
, (99)

λn+1
S ≡(λn

S−γn
λS

◦ g(xn+1+µSU
n+1
S ))+ and (100)

λn+1
R ≡

(
λn
R−γn

λR
◦
(
f(ϕ(Hn+1,θn+1+µRU

n+1
R ),Hn+1)

−xn+1−S(µR)
))

+
, (101)
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where, dropping dependencies, the vectors of finite differences
∆g ∈ RNg and ∆g ∈ RNS are defined as

∆g ≜
[
∆1

g . . . ∆
Ng
g

]T
and ∆f ≜

[
∆1

f . . . ∆
NS

f

]T
, (102)

respectively. A complete description of the proposed model-free
primal-dual method is provided in Algorithm 1. We may readily
observe that the algorithm requires exactly three system probes
per user (i.e., of dimension NS), per iteration.

Two key differences between Algorithm 1 and the primal-dual
method presented in [23] are the presence of the feasibility slack
S, which follows from our analysis, as well as the interesting fact
that, due to our explicit formulation of the smoothed surrogate
(12), the dual updates (100) and (101) are naturally randomized,
in addition to the primal updates (98) and (99). Most importantly,
while the model-free method of [23] relies on policy gradient
updates, Algorithm 1 completely bypasses the need for introduc-
ing randomized policies into the learning procedure. This also
makes Algorithm 1 straightforward to implement, as computation
of the gradient of ϕ is not required; in fact, Algorithm 1 may be
executed as described for any admissible choice of ϕ, without
additional computational requirements.

Additionally, although we do not discuss such settings in detail,
we would like to note that the proposed primal-dual approach
should work for certain resource allocation programs considered
over nonstationary channels, as long as the associated channel
process is ergodic in a sufficiently wide sense. A typical example
would be Markovian Rayleigh fading channels, where small scale
fading follows a stable order-1 linear autoregression through time
(see, e.g., the model adopted in [34], [35]). Since the distribution
of the channel may be time-varying in such cases, expectations
in (1) would be with respect to a limit channel state distribution
(e.g., an invariant measure of an ergodic Markov process), say
M∞

H , and Algorithm 1 would train a deterministic policy ϕ in
order to maximize the quality of service of the wireless system
under consideration in the long term, that is, relative to M∞

H .
Of course, if the channel state process is iid, then it is true that
M∞

H ≡ MH, and the resource allocation task reduces to what
we have implicitly considered so far.

Lastly, it would be valuable to compare our proposed policy
training approach with recent work on (deep) Q-Learning-based
schemes for resource allocation in wireless systems, which also
consider channel state Markovianity by construction [34]–[38].
There are two important advantages of Algorithm 1, as compared
to state-of-the-art (deep) Q-Learning-based schemes, e.g., those
recently proposed in [35], [36], [38]. First, (deep) Q-Learning
(still) suffers from multiple curses of dimensionality, especially
for problems with large or uncountable action spaces; this is in
particular the case in many resource allocation problems arising
in wireless communications and networking, since the involved
(physical-layer) channel state is real-valued. This important issue
may be overcome either heuristically, or by appropriate formula-
tion of the resource allocation problem to begin with [34]–[36].
Note that this issue does not occur within our approach, since the
PFA ϕ(·,θ) is RNϕ -valued and defined directly as a function of
the channel state H (lying in the Euclidean subspace H), which
constitutes the information primitive of the base problem (1). In
a sense, Algorithm 1 stands as a model-free actor-only analog to
(gradient-based and more complex) actor-critic schemes [34].
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Figure 1: Sumrates (in nats per unit of time) achieved by the
proposed method, the clairvoyant policy, as well as a uniform
power allocation policy, in the case of a simple AWGN channel.

Second, and specifically in regard to deep Q-Learning-based
resource allocation, training Deep Q-Networks (DQNs) consti-
tutes an often computationally intensive and complicated pro-
cedure. In fact, in order to achieve good performance without
utilizing a prohibitively large DQN, problem-specific feature se-
lection is commonly employed; this is achieved by incorporating
model information into the quantities selected as inputs (i.e., the
features) to the resulting DQN. Again, guided feature selection is
performed heuristically by trial-and-error; see, for instance, [35],
[38]. As a result, such state-of-the-art deep Q-Learning schemes
are inherently model-based, since knowledge about the underly-
ing system model is explicitly built into the training process of the
corresponding DQN. We should note though that complex feature
selection in existing works often advocates distributed execution
of the resulting allocation schemes. Nevertheless, our approach
supports this desirable feature as well, via appropriate choice of
the adopted policy parameterization. Overall, here we end up with
a simple and effective fully model-free policy training algorithm,
and with an equally simple implementation. Further, Algorithm 1
applies to a large variety of resource allocation tasks (other than
those in [34]–[38]), while also being technically grounded.

Further core operational issues related to distributed or agent-
based implementation, incomplete or delayed channel state ob-
servations, etc., are not considered herein, but can be excellent
topics for future work.

VI. NUMERICAL SIMULATIONS & DISCUSSION

We now numerically confirm and discuss the efficacy of the
proposed primal-dual algorithm (Algorithm 1) by application on
two basic wireless models, namely, a classical Additive White
Gaussian Noise (AWGN) channel, as well as a Multiple Access
Interference (MAI) channel. Also, in all simulations presented
in this section, the parameterization ϕ is appropriately selected
from the well-known ϵ-universal class of fully connected, feed-
forward DNNs, with ReLU hidden layers and sigmoid output
layers, similar to the setting considered in [23].

For the AWGN channel case, we consider a simple multiuser
networking scenario where each user is given a dedicated channel
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Figure 2: Rate (left) and power (right) constraint violation exhibited by the proposed method, both random and ergodic (smoother
curves in both figures), in the case of a simple AWGN channel.

to communicate, with no channel interference. We wish to
allocate power between users in order to maximize the weighted
sumrate of the network, within a total expected power budget
pmax, provided as a specification. Given fixed and given user
priority weights wi ≥ 0, i ∈ N+

NS
, selected, without loss of

generality, such that
∑

i w
i ≡ 1, optimal power allocation may

be achieved by solving the stochastic program

maximize
x
i
,θ

i
,i∈N+

NS

∑
i∈N+

NS

wixi

subject to xi ≤ E

{
log

(
1+

Hiϕi(Hi,θi)

νi

)}

E

{ ∑
i∈N+

NS

ϕi(Hi,θi)

}
≤ pmax

(xi,θi) ∈ R+ ×R
N

ϕ
i
, ∀i ∈N+

NS

, (103)

where Hi ≥ 0 and νi > 0 are the fading power and noise
variance experienced by the i-th user, and each parameterization
ϕi : R+ × R

N
ϕ
i → [0, pmax] is chosen as a DNN with single

input, two hidden layers with eight and four neurons, respectively,
and a single output, for all i ∈ N+

NS
. The rest of details in

regard to the architecture of each of the involved DNNs follows
the discussion above. The reason for choosing NS uncoupled
DNNs, one for each user, comes from the structure of the
globally optimal solution to the most general, unparameterized
version of problem (103) (mapping to (1)), which, for this simple
networking setting, may be efficiently determined [7]. Of course,
this solution results in an ultimate benchmark upper bound of the
sumrate achieved by any feasible ϵ-universal resource allocation
policy, at the expense of assuming complete knowledge of
the true information theoretic description of the communication
system; for this reason, we hereafter fairly refer to this solution
as clairvoyant.

By defining vectors

w ≜ [w1 . . . wNS ]T , (104)

ϕ(H,θ) ≜
[
ϕ1(H1,θ1) . . . ϕNS (HNS ,θNS )

]T
and (105)

ν ≜
[
ν1 . . . νNS

]T
, (106)

problem (103) may be reexpressed in the canonical form (2) as

maximize
x,θ

⟨w,x⟩

subject to

[
x

0

]
≤E

[
log(1+H ◦ ϕ(H,θ) � ν)

pmax − 1Tϕ(H,θ)

]
(x,θ) ∈ R

NS
+ ×RNϕ

, (107)

where log(·) and “�” denote the operations of entrywise log-
arithm and division, respectively. Therefore, Algorithm 1 is
applicable to problem (107) and, in turn, (103), by considering
the corresponding smoothed surrogate based on (12).

Since the objective of (103) is usually perfectly known to the
wireless engineer, we may set µS ≡ 0. In other words, in the
corresponding smoothed surrogate (cf. (12)), Gaussian smoothing
is applied only to the constraints of problem (107).
Remark 18. Note that, in (103), Hi denotes the square of the
fading channel experienced by user i. Nevertheless, since the
square function is one-to-one and onto on the nonnegative reals,
taking directly the square of the involved channels is virtually
consistent with our setting established in Section I. ■

To assess the performance of the proposed Algorithm 1 on
problem (107), we assume NS ≡ 10 users, set pmax ≡ 20,
and consider a randomly generated weight vector w. We also
assume that νi ≡ 1, and that Hi is exponentially distributed
with parameter λ ≡ 1/2, modeling the square of a unit vari-
ance Rayleigh fading channel state, for all i ∈ N+

NS
. Then,

we execute Algorithm 1 for 105 iterations, with initial values
x0 ≡ 1,θ0 ≡ 0 and λ0

S ≡ 1NS+1, constant stepsizes γn
x ≡

0.0011,γn
θ≡0.00081,γn

λS
≡
[
0.0081T

NS
0.0001

]T
, for all n∈N,

null feasibility slack S ≡ 0, and with the smoothing parameter
set as µR ≡ 10−9.
Remark 19. Our seemingly trivial choice for the feasibility slack
(S ≡ 0) is justified because, as long as µR is small enough with
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Figure 3: Ergodic sumrates (smoothened) achieved by the pro-
posed method for different values of NS , in the case of a simple
AWGN channel.

µR ≪
√
Nϕ (true in all our simulations as, at most, Nϕ ≈ 1000),

any reasonable value for the constant vector C, even if different
from cR, would result in tiny, practically unnoticeable constraint
violation, as asserted by Theorem 7. ■

Fig. 1 shows the evolution of the sequence of objective values
{⟨w,xn⟩}n∈N, the instantaneous sumrate sequence {⟨w, log(1+
Hn ◦ ϕ(Hn,θn) � ν)⟩}n∈N, as well as an approximation of
the ergodic sumrate sequence {⟨w,E{log(1 + H ◦ ϕ(H,θn)�
ν)⟩}}n∈N. The ergodic performance of Algorithm 1, expressed by
the latter estimate, is also compared with the ergodic performance
of the unparameterized, globally optimal power allocation policy
solving (1) (the clairvoyant), as well as that of a deterministic
uniform power allocation policy across users. All ergodic esti-
mates were computed via simple moving average smoothing of
the respective process realizations.

Fig. 1 readily demonstrates that the values of the objective
of (107) match the values of the estimated ergodic sumrate, as
both obtained from Algorithm 1. At the same time, the ergodic
sumrate obtained from Algorithm 1 converges remarkably close
to that achieved by the clairvoyant policy, which assumes full
knowledge of the model describing the wireless system. There-
fore, in this case, the proposed zeroth-order primal-dual method
attains actually near-optimal system performance.

Fig. 2 shows similar type estimates (instantaneous and ergodic)
concerning violation of the rate and power constraints of problem
(107), during execution of Algorithm 1 (positive values indicate
constraint violation). We observe that all constraints are active
(i.e., met with equality) on average, which confirms that the
proposed primal-dual-method indeed converges to feasible power
allocation policies, while achieving maximal ergodic rates on
a per user basis, as desired. We emphasize that, contrary to
the clairvoyant solution, such good performance of Algorithm
1 is achieved without the availability of a baseline model of the
wireless system, and at the absence of gradient information of
information rate functions, as well as DNN parameterizations.

Our discussion regarding the AWGN channel case is con-
cluded by discussing Fig. 3, which shows smoothened paths

0 0.5 1 1.5 2 2.5 3
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Figure 4: Sumrates (nats per unit of time) achieved by the pro-
posed method, the WMMSE policy, and a deterministic uniform
power allocation policy, in the case of a MAI channel.

generated by the proposed algorithm for different values of
NS (i.e., the number of users in the network), each contrasted
with the respective maximal ergodic sumrate achieved by the
strictly optimal, clairvoyant policy. The total numbers of decision
variables (NS + Nϕ ≡ NS(1 + N

ϕ
1)) for each of the cases

considered in Fig. 1 are 228, 456, 684 and 912, respectively. We
observe that, while the rate of convergence gets slower as NS

increases (as expected), the performance achieved by our method
is consistently very close to that obtained by the strictly optimal,
clairvoyant policy. This also provides empirical evidence that the
proposed primal-dual method is correct.

Although the dependence of the performance of our algorithm
relative to NS and Nϕ is not guaranteed to be sublinear (in
general), it is possible to make this dependence better, if needed,
by exploiting mini-batches of stochastic finite differences, at
the trade-off, however, of increasing the number of required
system probes [56]. Further, by using more efficient policy
parameterizations which exploit (stochastic) network structure,
such as Random Edge Graph Neural Networks (REGNNs) [24],
it is possible to not only reduce the number of the involved
free parameters (Nϕ in particular), but also train REGNN-based
resource allocation policies on smaller, moderately sized wireless
systems, and then successfully extrapolate to large-scale wireless
systems; this is a property of REGNNs is known as transference
[24]. We would also like to mention that detailed convergence
rate analysis of zeroth-order primal-dual methods for nonconvex
problems is currently a challenging and open research topic [56];
of course, such an analysis is out of the scope of this paper.

Remark 20. Note that, although the adopted statistical channel
model is the same for all network links, the ergodic rate estimates
in Fig. 2 (left) are different from each other. This is mainly
due to two reasons. First, problem (103) does not treat each
user the same way. This is because each user i is assigned a
random priority weight wi > 0, present in the linear objective
of (103). Second, the empirical results that we provide refer
to a single sample path generated by our method, and not
averaged experiment trials. As a result, until convergence, our
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Figure 5: Rate (left) and power (right) constraint violation exhibited by the proposed method, both random and ergodic (smoother
curves in both figures), in the case of a MAI channel.

(pseudo-)ergodic estimates, which we obtain via moving average
smoothing, will be initially biased, depending on the particular
channel realization for every user. Exactly the same observations
are true for our second simulation case, as discussed below. ■

Next, we consider the case of a MAI channel, where NS

transmitters simultaneously communicate with a central node,
for instance, a common receiver, or a base station. In this case,
the signal transmitted by each user creates interference to the
signals transmitted by all other users in the network. As before,
we would like to optimally allocate power between users in
order to maximize the weighted sumrate of the network, within
a total expected power specification pmax. Working similarly to
the AWGN channel case discussed above, we may formulate the
stochastic program

maximize
x
i
,i∈N+

NS
,θ

∑
i∈N+

NS

wixi

subject to xi≤ E

{
log

(
1+

Hiϕi(H,θ)

νi+
∑

i ̸=j H
jϕj(H,θ)

)}

E

{ ∑
i∈N+

NS

ϕi(H,θ)

}
≤ pmax

(xi,θ) ∈ R+ ×RNϕ , ∀i ∈N+
NS

, (108)

where each parameterization ϕi : R
NS
+ × RNϕ → [0, pmax],

i ∈ N+
NS

is an element of the output layer of a single DNN taking
as input the full fading channel vector H ∈ R

NS
+ , and having two

hidden layers with thirty-two and sixteen neurons, respectively.
The intuition behind the adopted multiple-input multiple-output
DNN architecture lies in the strong coupling among the channels
of all users in every rate constraint of (108). The rest of details in
regard to the architecture of each of the involved DNNs follows
the discussion above.

As before, problem (108) may be reexpressed in the form of
(2); however, the details are slightly more technical compared to
the case of an AWGN channel, and are omitted for brevity.

In our simulations for this setting, we assume NS ≡ 5
users, a power budget pmax ≡ 20, and a randomly generated
weight vector w. We also let νi ≡ 1, and Hi follows the
same exponential distribution as before, for all i ∈ N+

NS
.

Then, we execute Algorithm 1 for 3 · 105 iterations, with initial
values x0 ≡ θ0 ≡ 0 and λ0

S ≡ 1NS+1, constant stepsizes
γn
x ≡ 0.00081,γn

θ ≡ 0.00051,γn
λS

≡
[
0.0051T

NS
0.0001

]T
, for

all n∈N, null feasibility slack S ≡ 0, and with the smoothing
parameter set as µR ≡ 10−9. As before, we set µS ≡ 0, that is,
the objective of (108) is reasonably assumed known.

Fig. 4 shows the evolution of the sequence of objective values
{⟨w,xn⟩}n∈N and, as before, the instantaneous sumrate sequence
obtained from Algorithm 1, as well as an approximation of
the corresponding ergodic sumrate. Since the solution to the
variational version of (108) is unavailable mainly due to noncon-
vexity of the involved rate constraints (cf. (1)), we compare the
ergodic performance of Algorithm 1 with that of the well-known
WMMSE policy [15], which, in our setting, provides an iterative
algorithm for finding an approximate solution, for each fading
realization, to the deterministic sumrate maximization problem

maximize
p
i
,i∈N+

NS

∑
i∈N+

NS

wi log

(
1+

Hipi

νi +
∑

i̸=j H
jpj

)
subject to

∑
i∈N+

NS

pi ≤ pmax

pi ≥ 0, ∀i ∈N+
NS

. (109)

Note that, as the form of problem (109) suggests, the WMMSE
heuristic assumes complete knowledge of the information theo-
retic model of the wireless system. In our simulations, WMMSE
is for 50 iterations, for each observed channel realization. For
reference, Fig. 4 also shows the ergodic performance achieved
by a uniform power allocation policy across users. As before,
all ergodic estimates were computed via simple moving average
smoothing of the respective process realizations.

Fig. 4 confirms that Algorithm 1 exhibits similar behavior
as in the AWGN channel case previously discussed, but for
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the significantly more complicated resource allocation problem
(108). Again, the objective of (108) and the ergodic sumrate
obtained from Algorithm 1 match, whereas the latter converges
rather close to the ergodic sumrate achieved by WMMSE.

Instantaneous and ergodic estimates of the rate and power
constraint violation of the decisions produced by Algorithm 1
for problem (108) are provided in Fig. 5 (again, positive values
indicate constraint violation). As in the AWGN channel case, all
constraints are active on average, confirming that the proposed
zeroth-order primal-dual method produces feasible and near-
state-of-the-art power allocation policies without knowledge of a
system model and in absence of gradient information, verifying
the effectiveness of the method in a model-agnostic setting.

In comparison with Algorithm 1, WMMSE produces decisions
which satisfy the constraints of problem (108) for every channel
realization, by construction. However, this is achieved at the
expense of solving one full optimization problem per channel
realization (i.e., at every "iteration" in our graphs). In the liter-
ature, the approach taken by WMMSE is well-known as a Cost
Function Approximation (CFA) [40].

On the other hand, the proposed model-free primal-dual algo-
rithm produces a policy by training, that is, a known and tractable
function (here, a DNN), which outputs (near-)optimal resource al-
location decisions for all possible channel states, simultaneously.
This policy satisfies the constraints of the postulated stochastic
resource allocation problem on average (as it should, of course,
based on our formulation). Lastly, we would also like to mention
that the percentage or rate of constraint violation (corresponding
to positive values in Fig. 5) relative to the number of observed
channel states is dependent on both the particular problem setting
and the adopted policy parameterization.

VII. CONCLUSION

We have considered the general problem of learning optimal
resource allocation policies in wireless systems, under a model-
free, data-driven setting. Starting with a generic variational for-
mulation of the resource allocation problem, and driven by its
intractability in most wireless networking scenarios, we focused
on parametric policy function approximations. Leveraging clas-
sical results on Gaussian smoothing, we first showed that it is
possible to crucially simplify gradient evaluation for all utility
and service functions involved, by appropriately constructing a
finite dimensional, smoothed surrogate to the original variational
problem. Then, assuming near-universal policy parameterizations,
e.g., Deep Neural Networks (DNNs), we completely charac-
terized the duality gap between the original problem and the
dual of the proposed surrogate, establishing linear dependence
of this duality gap relative to smoothing and near-universality
parameters. In fact, this gap may be made arbitrarily small at
will. Motivated by our results, and in conjunction with the special
properties of the proposed smoothed surrogate, we also developed
a zeroth-order stochastic primal-dual algorithm, enabling com-
pletely model-free, data-driven optimal resource allocation for
ergodic network optimization. Our simulations show that DNN-
based, data-driven policies produced by the proposed primal-
dual method attain near-ideal performance, relying exclusively
on limited system probing, completely bypassing the need for

gradient computations and policy randomization, and at the
absence of baseline channel or information rate models.
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