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ABSTRACT
Despite the simplicity and intuitive interpretation of minimum

mean squared error (MMSE) estimators, their effectiveness in cer-
tain scenarios is questionable. Indeed, minimizing squared errors
on average does not provide any form of stability, as the volatility
of the estimation error is left unconstrained. When this volatility is
statistically significant, the difference between the average and re-
alized performance of the MMSE estimator can be drastically dif-
ferent. To address this issue, we introduce a new risk-aware MMSE
formulation which trades between mean performance and risk by ex-
plicitly constraining the expected predictive variance of the involved
squared error. We show that, under mild moment boundedness con-
ditions, the corresponding risk-aware optimal solution can be eval-
uated explicitly, and has the form of an appropriately biased non-
linear MMSE estimator. We further illustrate the effectiveness of
our approach via several numerical examples, which also showcase
the advantages of risk-aware against risk-neutral MMSE estimation,
especially in models involving skewed, heavy-tailed distributions.

Index Terms— MMSE Estimation, Constrained Bayesian Esti-
mation, Risk-Aware Optimization, Risk Measures.

1. INTRODUCTION
Critical applications require that stochastic decisions be made not
only on the basis of minimizing average losses, but also safeguard-
ing against less probable, though possibly catastrophic, events. Ex-
amples appear naturally in many areas, including wireless industrial
control [2], energy [3, 4], finance [5, 6, 7], robotics [8, 9], LIDAR
[10], and networking [11]. In such cases, the ultimate goal is to
obtain risk-aware decision policies that hedge against statistically
significant extreme losses, even at the cost of slightly sacrificing per-
formance under nominal operating conditions.

To illustrate this effect, consider the problem of estimating a ran-
dom state X from observations corrupted by state-dependent noise,
namely Y |X∼N(X,9X

2
) (see Section 5). In such a setting, either

small or large values of Y provide highly ambiguous evidence, since,
in both cases, they can come from either small or large values of X .
This is corroborated by Fig. 1, which displays the posterior PX|Y
for two values of Y . While the MMSE estimator may incur severe
losses, the risk-aware estimator we develop in this work –red lines in
Fig. 1– hedges against observation ambiguity, thus avoiding extreme
prediction errors. This is achieved by biasing estimates towards the
tail of the posterior PX|Y , by the right amount, for each value of
Y . Although the risk-aware estimator may incur larger losses on av-
erage, it performs statistically more consistently across realizations
of Y (also see Fig. 2, Section 5). It is also worth contrasting risk-
awareness with statistical robustness, whose goal is to protect against
deviations from a nominal model. Robust estimators –green lines in
Fig. 1– promote insensitivity to tail events, which they designate
as statistically insignificant. On the other hand, estimators resulting
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Note: Due to space constraints, all proofs are deferred to [1].
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Table 1. Classification of statistical uncertainty.
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Fig. 1. Comparison between risk-neutral and risk-aware estimates.

from risk-aware formulations treat these events as statistically sig-
nificant, though relatively infrequent (see Table 1).

Over the last three decades, risk-aware optimization has grown
increasingly popular and has been studied in the contexts of both de-
cision making and learning [12, 13, 14, 15, 16, 17, 18, 19]. In risk-
aware optimization, expectations are replaced by more general func-
tionals, called risk measures [20], whose purpose is to quantify the
statistical volatility of random losses, as well as mean performance.
Popular examples include mean-variance functionals [5, 20], mean-
semideviations [16], and Conditional Value-at-Risk (CVaR) [21].

In Bayesian estimation, risk awareness is typically achieved by
replacing the classical quadratic cost with its exponentiation [22, 23,
24, 25, 26]. However, although sometimes effective, this approach is
not without limitations. First, the need for finiteness of the moment
generating function of the quadratic cost excludes heavy-tailed dis-
tributions, which are precisely those that incur in high risk. Second,
the exponential approach does not provide an interpretable way to
control the trade-off between mean performance and risk, making it
hard to use in settings where explicit risk levels must be met. Third,
it does not result in a simple, general solution as in classical MMSE
estimation, challenging its practical applicability. Finally, it does not
effectively quantify observation-induced risk, inherent to problems
in which measurements provide ambiguous evidence.

In this work, we pose risk-aware functional Bayesian estimation
as a constrained MMSE problem, where squared errors are mini-
mized on average, subject to a bound on their expected conditional
variance. We show that, under mild conditions, this formulation re-
sults in a convex variational problem that admits a closed-form solu-
tion. The resulting optimal risk-aware nonlinear MMSE estimator is
applicable to a wide variety of generative models, including highly
skewed and/or heavy-tailed distributions. The effectiveness of our
approach is confirmed via numerical examples, also demonstrating
its advantages against risk-neutral MMSE estimation.



2. PROBLEM FORMULATION
Let (Ω,F ,P) be a probability space, and consider an arbitrary pair
of random elements X : Ω → RM and Y : Ω → RN on (Ω,F ).
We are interested in the problem of estimating X from a single real-
ization of Y in a Bayesian setting, namely by assuming knowledge
of the joint probability distribution P(X,Y ). We may conveniently
think of Y as available observations, on the basis of which we would
like to make predictions about the hidden state X . Undoubtedly, this
general problem is fundamental in many areas, including statistics,
signal processing, machine learning, and control, and with numerous
interesting applications.

Of course, an established approach to the prediction problem
considered is to choose an estimator X̂ :Ω→RM as a solution to
the stochastic variational MMSE program

minimize
X̂:Ω→RM

E{‖X − X̂‖22}

subject to X̂ is Y -measurable
, (1)

where Y ≡σ{Y } denotes the sub-σ-algebra of F generated by Y .
Problem (1) is well-understood under rather general conditions. In
fact, if we merely assume that X ∈ L1(Ω,Y ,P;RM ) ≡ LM1|Y , an
optimal solution to (1) is given by any conditional expectation of X
relative to Y , i.e., X̂

∗
(Y ) ≡ E{X|Y }.

However, despite the simplicity of MMSE estimation, as well
as its intuitive geometric interpretation in Hilbert space whenever
X ∈ LM2|Y , its effectiveness is often questionable. Indeed, mini-
mizing the squared error ‖X − X̂‖22 in expectation does not pro-
vide stability or robustness, in the sense that statistically significant
variability of the resulting optimal prediction error is uncontrolled.
In other words, the MMSE problem (1) is risk-neutral. This has
important consequences from a practical perspective, since the er-
ror realization ‖X − X̂

∗
(Y )‖22 experienced in practice may be far

from the expected value E{‖X−X̂
∗
(Y )‖22}, or even the predictive

statistic E{‖X−X̂
∗
(Y )‖22|Y }. It is then clear that achieving small

error variability is at least as desirable as achieving minimal errors
on average.

Motivated by the previous discussion, we consider a nontrivial
variation of the risk-neutral MMSE problem (1), striking a balance
between mean performance and risk. Specifically, we introduce and
study the constrained stochastic variational problem

minimize
X̂:Ω→RM

E{‖X − X̂‖22}

subject to E{VY {‖X − X̂‖22}} ≤ ε
X̂ is Y -measurable

, (2)

where

VY {‖X−X̂‖
2
2},E

{(
‖X−X̂‖22−E{‖X−X̂‖

2
2|Y }

)2|Y} (3)

is the predictive variance of ‖X − X̂‖22 relative to Y , and ε > 0
is a fixed risk tolerance. In words, problem (2) constrains the ex-
pected predictive variance of the quadratic cost ‖X − X̂‖22, known
in the statistics literature as the unexplained component of its vari-
ance; the latter is due to the law of total variance. In other words, the
constraint quantifies the uncertainty of MMSE-optimally predicting
the quadratic cost achieved by choosing an estimator X̂(Y ), on the
basis of the observations Y . Of course, E{VY {‖X − X̂‖22}} is a

measure of risk. Therefore, we suggestively refer to the task fulfilled
by problem (2) as risk-aware MMSE estimation.

Problem (2) confines the search for an optimal MMSE estimator
within the family of estimators exhibiting risk (in the sense described
above) within tolerance ε; thus, problem (2) is well-motivated. Nat-
urally, an optimal solution to the risk-aware problem (2) in general
achieves larger MSE as compared to the risk-neutral problem (1).
However, the statistical variability of the squared errors achieved by
the former will be explicitly controlled, according to the tunable tol-
erance ε, resulting in more stable statistical prediction.

3. CONVEX VARIATIONAL QCQP REFORMULATION
As it turns out, in such a general form, the risk-aware MMSE prob-
lem (2) is rather challenging to study, let alone solve. Therefore, in
the following, we will consider a slightly more constrained version
of (2), by enforcing square integrability on the decision X̂ , namely,

minimize
X̂:Ω→RM

E{‖X − X̂‖22}

subject to E{VY {‖X − X̂‖22}} ≤ ε
X̂ ∈ LM2|Y

, (4)

Of course, the additional L2 constraint in problem (4) may not be in
favor of generality, per se, but it is harmless for almost every prac-
tical consideration. Further, in the following we make use of the
following regularity condition on the statistical behavior of (X,Y ).

Assumption 1. It is true that E
{
‖X‖32|Y

}
∈ L1

2|Y .

In words, Assumption 1 simply says that the third-order moment
filter E

{
‖X‖32|Y

}
is of finite energy. Using Assumption 1, problem

(4) may be conveniently reformulated, as the next result suggests.

Lemma 1. (QCQP Reformulation of Problem (4)) Suppose that
Assumption 1 is in effect, and define the posterior covariance

ΣX|Y , E
{
(X − E{X|Y })(X − E{X|Y })T |Y

}
� 0. (5)

Then, problem (4) is well-defined and equivalent to the convex vari-
ational Quadratically Constrained Quadratic Program (QCQP)

minimize
X̂:Ω→RM

1

2
E
{
‖X̂‖22−2(E

{
X|Y

}
)
T
X̂+E

{
‖X‖22|Y

}}
subject to E

{
X̂

T
ΣX|Y X̂ −

(
E
{
‖X‖22X|Y

}
−E
{
‖X‖22|Y

}
E{X|Y }

)T
X̂
}

≤
ε− E

{
VY {‖X‖

2
2}
}

4
X̂ ∈ LM2|Y

, (6)

where all expectations and involved operations are well-defined.

Lemma 1 is very useful, because it shows the equivalence of
problem (4) to the convex QCQP (6), which is well-defined and fa-
vorably structured. In particular, this reformulation will allow us to
effectively study problem (4) by looking at its variational Lagrangian
dual. Actually, as we discuss next, working in the dual domain will
allow us to solve problem (4) in closed-form. Of course, such a
closed form is important, not only because it provides an analytical,
textbook-level solution to a functional risk-aware problem, which
happens rather infrequently, but also because, as we will see, the so-
lution itself provides intuition, highlights connections and enables
comparison of problem (4) with its risk-neutral counterpart (1).



4. RISK-AWARE MMSE ESTIMATORS
In our development, we exploit a variational version of Slater’s con-
dition, which is one the most widely used constraint qualifications in
both deterministic and stochastic optimization.

Assumption 2. Given ε > 0, problem (4) satisfies Slater’s condi-
tion, i.e., there exists X̂† ∈ L

M
2|Y , such that E{‖X − X̂†‖

2
2} <∞

and E{VY {‖X − X̂†‖
2
2}} < ε.

Under both Assumptions 1 and 2, it follows that the QCQP (6)
satisfies Slater’s condition, as well. Then, it must be the case that
E
{
VY {‖X‖

2
2}
}
<∞; if not, Assumption 2 is impossible to hold.

Further, problem (6) must be feasible, with convex effective domain

FM2|Y ,
{
X̂ ∈ LM2|Y

∣∣E{X̂T
ΣX|Y X̂

}
<∞

}
. (7)

Next, if Assumption 1 holds, define the variational Lagrangian
of the primal problem (6) L :LM2|Y ×R+→(−∞,∞] as

L
(
X̂, µ

)
,

1

2
E
{
‖X̂‖22 − 2(E

{
X|Y

}
)
T
X̂+E

{
‖X‖22|Y

}}
+ µE

{
X̂

T
ΣX|Y X̂ −

(
E
{
‖X‖22X|Y

}
− E

{
‖X‖22|Y

}
E{X|Y }

)T
X̂
}

− µ
ε− E

{
VY {‖X‖

2
2}
}

4
, (8)

where µ ∈ R+ is a multiplier associated with the constraint of (6).
The dual function D :R+→ [−∞,∞] is accordingly defined as

D(µ) , inf
X̂∈FM

2|Y

L
(
X̂, µ

)
. (9)

If P ∗ ∈ [0,∞] denotes the optimal value of problem (6), it is true
that D ≤ P ∗ on R+. Then, the optimal value of the dual problem

maximize D(µ)

subject to µ ≥ 0
, (10)

D∗, supµ≥0D(µ)∈[−∞,∞], is the tightest under-estimate of P ∗,
when knowing only D .

Exploiting Assumptions 1 and 2, we may now formulate the fol-
lowing fundamental result. Although not presented here, the proof
invokes ([27], Section 8.3, Theorem 1) (for instance).

Theorem 1. (QCQP (6): Zero Duality Gap) Suppose that Assump-
tions 1 and 2 are in effect. Then, strong duality holds for prob-
lem (6), that is, 0 ≤ D∗ ≡ P ∗ < ∞. Additionally, the set of
dual optimal solutions, arg maxµ≥0 D(µ), is nonempty. Further,
if X̂∗ is primal optimal for (6), it follows that X̂∗ ≡ X̂∗(µ∗) ∈
arg min

X̂∈FM
2|Y

L
(
X̂, µ∗

)
, where 0 ≤ µ∗ ∈ arg maxµ≥0 D(µ).

Leveraging Theorem 1, it is possible to show that, under As-
sumptions 1 and 2, the QCQP (6) and, therefore, the original L2

risk-aware MMSE problem (4), admit a common closed form solu-
tion. In this respect, we have the next theorem, which constitutes the
main result of this paper.

Theorem 2. (QCQP (6): Closed-Form Solution) Suppose that As-
sumptions 1 and 2 are in effect. Then, an optimal solution to problem
(6) may be expressed as

X̂∗(µ∗) ≡
(
I + 2µ∗ΣX|Y

)−1(E{X|Y }
+µ∗

(
E
{
‖X‖22X|Y

}
−E
{
‖X‖22|Y

}
E{X|Y }

))
,

(11)

with X̂∗(µ∗) ∈ arg min
X̂∈FM

2|Y
L
(
X̂, µ∗

)
, and where µ∗ ∈ R+

is an optimal solution to the concave dual problem

sup
µ≥0

D(µ)≡ sup
µ≥0

inf
X̂∈FM

2|Y

L
(
X̂, µ

)
≡ 1

2
E
{
‖X‖22

}
+

1

4
sup
µ≥0

{
µE
{
VY {‖X‖

2
2}
}

− 2E
{
X̂

T

∗ (µ)(I + 2µΣX|Y )X̂∗(µ)
}
− µε

}
. (12)

Additionally, the optimal risk-aware filter X̂∗(µ∗) is unique, almost
everywhere relative to P .

Theorem 2 completely solves problem (4) by providing a closed-
form expression for the risk-aware MMSE estimator X̂∗, defined in
terms of the dual optimal solution µ∗ (a number). The latter always
exists, thanks to Theorem 1, and may be computed by leveraging our
knowledge of the distribution P(X,Y ) and via either some gradient-
based method, or even empirically. Note that the dual function D is
merely a concave function on the positive line.

The fact that a closed-form optimal solution to problem (6) ex-
ists is remarkable, and it provides insight into the intrinsic structure
of constrained Bayesian risk-aware estimation, also enabling an ex-
plicit comparison of the optimal risk-aware filter X̂∗ with its risk-
neutral counterpart. Indeed, by looking at the explicit form of the op-
timal risk-aware filter X̂∗, we readily see that it is a function involv-
ing the MMSE estimator E

{
X|Y

}
, its predictive covariance matrix

ΣX|Y , as well as the second and third order filters E
{
‖X‖22|Y

}
and

E
{
‖X‖22X|Y

}
. All these quantities are elementary and, in princi-

ple, they can be evaluated by utilizing a single observation of Y , and
by exploiting our knowledge of the conditional measure PX|Y , just
as in risk-neutral MMSE estimation.

Also, we see that X̂∗ may be regarded as a biased MMSE esti-
mator, drawing parallels to James-Stein estimators, in another sta-
tistical context. Through the effect of bias, while James-Stein esti-
mators achieve lower mean squared error, X̂∗ achieves lower risk.
Therefore, optimal risk aversion, in the sense of problem (2), may be
interpreted as the result of bias injection in MMSE estimators.

Additionally, we observe that the solution is regularized, in the
sense that the term 2µ∗ΣX|Y is diagonally loaded with an identity
matrix; as a result, X̂∗ is always well-defined and numerically sta-
ble. In fact, whenever µ∗ ≡ 0 (depending on the magnitude of the
tolerance ε), it follows that X̂∗ ≡ E

{
X|Y

}
. But this is not the

only case where the two estimators turn out to be the same. The next
result confirms that there exists a certain family of models for which
risk-neutral and risk-aware MMSE estimation actually coincide; in
such cases, posing (4) is redundant.

Theorem 3. (When Risk-Neutral/Aware Filters Coincide?) Sup-
pose that the conditional measure PX|Y is such that

E
{(
Xi−E

{
Xi|Y

})2(
X−E

{
X|Y

})
|Y
}
≡ 0, ∀i ∈ N+

M . (13)

Then, in the notation of Theorem 2, it is true that, for every choice
of µ ≥ 0, X̂∗(µ) ≡ E

{
X|Y

}
. In other words, under Assumptions

1 and 2, risk-neutral MMSE estimation is also risk-aware, for every
qualifying value of ε > 0. In particular, this is the case whenever
PX|Y is joint Gaussian.

In the next section, we put the risk-aware MMSE estimator to
work, as well as numerically evaluate its performance in comparison
with that of the usual, risk-neutral MMSE estimator.



5. NUMERICAL SIMULATIONS
We evaluate the behavior of the estimator in (11) in two different
scenarios. The first consists of the problem of estimating an expo-
nentially distributed hidden state X , E{X} = 2, from the observa-
tion Y = X + v, where v is a zero-mean Gaussian random variable
independent of X whose variance is given by E{v2} = 9X

2; in
this case, v constitutes a state-dependent noise. In the second sce-
nario, the goal is to jointly estimate the random vector X = [z h]

T

from the observation Y = hz + w, where z is a zero-mean Gaus-
sian random variable with variance E{z2} = 2, h has a Rayleigh
distribution with rate 2, and w is a zero-mean Gaussian noise with
variance E{w2} = 10

−1. This scenario is prototypical for estima-
tion problems in communications, where z is the signal of interest
and h represents the channel fading. Throughout the simulations, we
also show results for the risk-neutral MMSE estimator and the Mini-
mum Mean Absolute Error (MMAE) estimator, or, equivalently, the
conditional median relative to the respective observations, the latter
being used as an example of a robust location parameter estimator.

In Fig. 1, we saw that the risk-aware estimator yields larger es-
timates than the MMSE estimator, in order to account for statistical
ambiguities of the state-dependent noise model. Though this differ-
ence may seem extreme in some instances, e.g., for small values of Y
(as in Fig. 1), it is in fact quite effective in reducing the conditional
variance. Indeed, for Y = 0.1, the risk-aware estimator in Fig. 1
optimally reduces the (conditional) risk by approximately 26% as
compared to the risk of the risk-neutral estimator; this is achieved by
sacrificing average performance, also by a factor of 26%. Of course,
this is only one of the operation points of the risk-aware estimator.
In Fig. 2, we show results for different values of µ, where we aver-
age over the distribution of Y . Observe that the risk-aware estimator
obtained via the constrained problem (2) achieves a sharp trade-off
between average performance (i.e., MSE) and risk, which can be
tuned according to the needs of the application. Further, note that
the decrease in risk is considerably faster than the increase in MSE.

Interestingly, a similar phenomenon is observed in the commu-
nication scenario (Fig. 3). Again, the estimator risk displays a much
faster initial rate of decrease with respect to µ than the rate at which
the MSE increases. This is more pronounced in the estimation of the
component z, for which the risk-aware estimator can provide reduc-
tions of almost 60% in risk for a 35% increase in average squared
error. Note that, as per Theorem 3, the Gaussian noise has indeed no
bearing on risk-awareness, as evidenced by the performance in the
noiseless case, i.e., for w = 0 (dashed lines). To achieve the behav-
ior of Fig. 3, the risk-aware estimator overestimates both z and h as
compared to the MMSE estimator, as illustrated in Fig. 4. In fact,
for small values of Y , the former hedges against the event of a deep
fade (h ≈ 0) by maintaining its estimates for z away from zero.

6. CONCLUSIONS
We derived a risk-aware MMSE estimator that accounts for statisti-
cal model volatility by hedging against extreme losses. We did so by
formulating a Bayesian risk-aware MMSE estimation problem that
minimizes squared errors on average, subject to an explicit tolerance
on their expected predictive variance. We then showed that this prob-
lem admits a analytical solution under mild moment boundedness
assumptions, and results in a risk-aware, biased nonlinear MMSE
estimator. The effectiveness of our approach was confirmed via sev-
eral numerical simulations. Future work includes further analysis of
the properties of the proposed estimator, as well as study of other
constrained risk-aware formulations.
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Fig. 2. Mean squared error and risk for different values of µ in the
state-dependent noise scenario.
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