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ABSTRACT
While millimeter wave (mmWave) communications promise high data rates, their sensitivity to blockage
and severe signal attenuation present challenges in their deployment in urban settings. One effective way to
mitigate those effects and increase communication range is relaying in combination with beamforming.
However, relay-assisted beamforming also requires relay selection, a process that not only is resource
demanding due to the need for explicit Channel State Information (CSI), but also introduces network
latency. In this paper, we introduce a relay beamforming approach for mmWave communications in an
urban scenario, which exploits the shadowing-induced correlation structure of the channel to reduce both
latency and CSI estimation overhead. Our system model consists of static relays deployed in clusters across
streets. Under that setting, we propose a novel, resource efficient scheme for joint optimal relay selection
and distributed cooperative beamforming that maximizes the expected Signal-to-Interference plus Noise
Ratio (SINR) at the destination, under power constraints. In particular, assuming a time-slotted system
operation, one relay from each cluster is optimally selected at each time slot to participate in optimal
beamforming at the next time slot. The key novelty of the proposed scheme is that relay selection is
implemented in a predictive and distributed manner, by exploiting channel correlations and by using past
and present measurements of magnitude CSI. As a result, at each time slot, optimal beamforming based
on relays selected in the previous slot and optimal predictive relay selection for the next time slot are
implemented completely in parallel. This parallelization eliminates delays induced by sequential execution
of relay selection and beamforming, and substantially reduces CSI estimation overhead. Simulations confirm
that the proposed relay selection scheme outperforms any randomized selection policy, while, at the same
time, achieves comparable performance to an ideal selection scheme that relies on perfect CSI estimates for
all candidate relays.

INDEX TERMS mmWave, cooperative relay beamforming, relay selection, 2-hop relaying, mmWave
channel modeling, Vehicle-to-Infrastructure.

I. INTRODUCTION

THE continuously growing number of connected devices
has led to congestion in the licensed spectrum. To alle-

viate the problem, next generation of commercial wireless
networks will exploit the previously untapped millimeter
wave (mmWave) spectrum band [1]. The mmWave spectrum
encompasses the frequencies 30 − 300 GHz, however the
considered mmWave bands for use in urban cellular systems

are at 28 and 38 GHz, since it has been shown that rain
attenuation and oxygen absorption is low [2], [3] at those
frequencies. The large available bandwidth will enable data
rates of the order of Gigabits-per-second (Gbps), and thus
will be able to support future wireless applications such as
Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I)
communications. However, to exploit the full potential of
mmWave networks for outdoor-to-outdoor wireless commu-
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nications, a new set of challenges, which are not present in
current wireless networks would need to be overcome, such
as severe path-loss, and sensitivity to blockage, shadowing
and fading [4].

Various measurement campaigns [2], [5]–[7] have revealed
that mmWaves incur increased propagation path-loss as com-
pared to the sub-6 GHz frequencies used today. One way to
compensate for that effect is to employ transmit beamforming
[8], which can increase the probability of the signal arriving
successfully at the destination. MmWaves also experience
large-scale fading, which, according to measurement cam-
paigns conducted in New York City and Austin, Texas [2],
can be modeled as normally distributed in the dB domain.
A similar campaign conducted in Daejeon City, Korea led to
similar conclusions [5]. MmWave wireless communications
in densely built cities are also susceptible to blockage by
their surrounding environment, e.g., by high-rise buildings,
moving vehicles, pedestrians, etc. [9]–[11]. In such an en-
vironment, the dominant propagation pattern of mmWaves
is along street canyons by reflecting off of buildings; this is
facilitated by the high reflectivity of common materials found
in cities, such as concrete and glass [12].

One way to overcome blockage effects would be to deploy
a dense network of street level mmWave base stations. Al-
though this would optimize the city wide Line-of-Sight (LoS)
coverage rate [13], it would not provide Quality-of-Service
(QoS) assurances. In fact, a dense network of mmWave base
stations can degrade the QoS of users due to interfering
base station transmissions [14], [15]. An alternative solution
to overcoming blockage and improve coverage is through
relaying [4], [8], [16], a concept that has been included in the
currently applied LTE-Advanced standard [17]. Multi-hop
relaying can improve connectivity [18] as well as the cover-
age probability and the transmission capacity of a network
[8]. However, a large number of hops requires significant
signaling and scheduling overhead to determine the most
suitable relays, which in turn can lead to increased energy
consumption and latency. Also, the potential security issues
associated with multi-hop relaying cannot be ignored [19],
[20], as the points at which a malicious user can intercept
the transmitted signal increase. On the other hand, 2-hop
relaying in combination with relay beamforming can in-
crease the communication range while avoiding most of the
aforementioned issues [21], at the cost, however, of added
complexity for the computation of beamforming weights
and phase synchronization [22]. By additionally taking into
consideration the 3D structure of the environment, signal
blockage can also be avoided by optimal positioning of
aerial mobile relays [23]. This approach has already been
considered for supporting mmWave communication [24], in
the context of Unmanned Aerial Vehicle (UAV) networks.

The most widely studied problem in 2-hop relaying for
device-to-device outdoor communication is relay selection,
i.e., determining the minimum number of deployed relays
[25], and/or best relay configuration, in order to optimize
the quality of communication [8], [26]–[29]. Typically, relay

selection requires instantaneous Channel State Information
(CSI) between source and relays, and relays and destination.
When CSI changes with time, optimal relay selection can
become a resource-demanding task, as the network needs to
first compute its channels via the exchange of pilots, and
then decide on the best relay configuration. This process
takes up bandwidth, wastes power and introduces latency in
the network. In the following, any relay selection scheme
that conforms to the aforementioned serial procedure will be
referred to as ideal.

In this paper, we consider a relay-assisted beamforming
approach for mmWave communications in an urban scenario,
and propose a new, resource efficient relay selection scheme,
designed to optimally enhance QoS in 2-hop Amplify-and-
Forward (AF) cooperative networks. By exploiting the corre-
lation structure of the channel induced by shadowing, a phe-
nomenon prominent in mmWave communications [30], we
are able to reduce both latency and CSI estimation overhead.
AF is adopted herein as it is the simplest forwarding scheme,
and of minimal implementation complexity. Other, possibly
more involved forwarding schemes may also be considered;
however, this is out of the scope of this work.

More specifically, our system model consists of static
relays deployed in clusters across streets. Each cluster is
defined within an area over which the channel exhibits sim-
ilar statistical characteristics. This is typical in mmWave
networks, which are primarily designed for relatively short
distance point-to-point communications. Assuming a time-
slotted system operation, the proposed scheme optimizes
QoS in a 2-stage fashion, where, in every time slot, and
simultaneously with AF beamforming to the destination, each
cluster predictively selects a representative relay (1st stage)
to optimally enhance AF beamforming at the subsequent
time slot (2nd stage). Predictive relay selection is achieved
by exploiting channel correlations with current and past
networkwide magnitude-only CSI (also known as Received
Signal Strength (RSS)) which is invariant to relay cluster
size, and is measured sequentially during the operation of
the system. This combination of cooperative beamforming
and relay selection, which together comprise the proposed
2-stage problem formulation, presents distinct operational
advantages over the trivial ideal scheme, stemming directly
from the predictive nature of our approach.

In our setting, network QoS is quantified by the expected
Signal-to-Interference+Noise Ratio (SINR) at the destina-
tion, which is a standard performance metric, and our goal is
to maximize that expected SINR, subject to a shared power
constraint among all relay clusters. Therefore, the optimal
beamforming weights need to be computed centrally for all
clusters. Nevertheless, the proposed relay selection procedure
is conducted in a completely distributed manner; each cluster
independently decides its successor representative for the
subsequent time slot by solving a simple local stochastic
optimization problem, without the need for inter-cluster in-
formation exchange.

Exploiting CSI correlations to predictively determine mo-

2 VOLUME 4, 2016



0 100 200 300 400 500 600

meters

0

100

200

300

400

m
et

er
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15S

D

1

2

3

4

FIGURE 1. A birds-eye view of the assumed urban topology. Each numbered
red circle depicts an intersection, that connects two or more road segments. A
solid numbered blue line depicts a relay cluster placed along the respective
street segment. The dotted lines depict all mmWave signal propagation paths
from the source to the destination, passing through relay cluster 3.

bile relay movement in cooperative beamforming networks
was recently explored in [22], in a conventional, free-space
setting. Here, we use a similar idea for predictive relay
selection. However, the special mmWave signal propagation
characteristics make the treatment of the selection problem
substantially different than that of [22]. In particular, the
diversity resulting from the reflective nature of the mmWave
signal propagation, as well as the possibly street-wise varying
channel parameters induce significant differences as far as
both problem description and development of corresponding
efficient implementation techniques are concerned.

Along with our proposed adaptive relay selection scheme,
this paper makes the following additional contributions:

1) We propose distributed cooperative beamforming for
expected SINR maximization in mmWave networks.
Our beamforming formulation alone allows for ef-
ficient exploitation of the spatial diversity induced
by dominant mmWave propagation paths, which is
a consequence of the spatial propagation patterns of
the mmWave medium [30]–[32]. The CSI induced by
the mmWave propagation paths is optimally combined
constructively at the destination, resulting in superior
network QoS, without the disadvantages of multi-hop
relaying. Although distributed beamforming is a well
established technique for exploitation of spatial diver-
sity in free-space communications, this paper is the
first to put forward its application to urban mmWave
networks, which are inherently topologically distinct as
compared to the free-space setting. Indeed, the spatial
structure of the mmWave medium is explicitly reflected
in the adopted mmWave channel model, as well as
in the form of the optimal beamforming weights and
achieved network SINR. In particular, our channel
model extends the state of the art by introducing a new
channel correlation kernel for effectively modeling the

statistical dependencies among the involved source-
relay and relay-destination channels; such dependen-
cies do not appear in free-space channel modeling.

2) As briefly mentioned above, within each time slot,
the implementation of the proposed relay selection
scheme is completely decoupled from that of optimal
beamforming. This is due to the predictive nature of
the proposed scheme, which determines the best clus-
ter representative before the start of each time slot.
Consequently, in a given slot, optimal beamforming
and optimal predictive relay selection for the next
slot can be performed in parallel, as one does not
depend on the other. This parallelism results in im-
proved time slot utilization. Additionally, as predictive
selection is implemented solely based on past channel
measurements, significant reduction of CSI estimation
overhead per time slot is achieved as compared to the
respective ideal scheme, with the reduction being more
pronounced as the relay density per cluster increases.
This is particularly important in mmWave networks,
where dense infrastructure is essential for achieving
satisfactory performance [33].

3) We propose a novel, practical and computationally
efficient technique for implementing our proposed re-
lay selection scheme. Specifically, the local stochastic
problem each cluster is responsible for is replaced
by a surrogate based on Sample Average Approxi-
mation (SAA) [34], which relies on predictive Monte
Carlo sampling of the channel uncertainty involved.
Heavily appealing to the statistical structure of the
adopted mmWave channel model, the proposed tech-
nique efficiently exploits spatiotemporal correlations
of the mmWave medium, and results in easily com-
putable, near-optimal relay selection policies. This is
achieved via a well-designed, non-trivial combination
of Kalman filtering and Gaussian process regression.

The effectiveness of the proposed joint beamforming and
relay selection system is confirmed through numerical sim-
ulations, conducted using synthetically generated CSI data.
First, all our numerical results show that the SINR per-
formance of our adaptive relay selection scheme is almost
identical to the ultimate performance achieved via the respec-
tive ideal scheme. On the other extent, our simulations also
verify that, as expected, the proposed strategic scheme clearly
outperforms any randomized selection policy which does not
exploit experience accumulated during system operation.

Additionally, we examine the effect of different cluster
topologies on overall system performance. On the one hand,
we confirm that expected network QoS increases with the
number of clusters taking part in the communication, also
revealing a probably sublinear relevant trend. On the other
hand, our simulations corroborate that cluster placement in
the city indeed affects the overall QoS of the network users,
recognizing the importance of cluster assignment as an open
problem for future research.
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II. MMWAVE URBAN CHANNEL MODEL
This section is dedicated to the development of a sufficiently
detailed urban mmWave channel model, which will be ex-
ploited throughout the rest of the paper. Our channel model
can be applied to any city topology consisting of a densely
built area with high-rise buildings, separated by non-curved
street canyons [31], [35], [36].

To facilitate our presentation, we hereafter consider sim-
plified city topologies such as that of Fig. 1, which shows
a top view schematic of a particular urban area, where the
numbered circles indicate road intersections, and the vertical
and horizontal lines connecting those circles denote streets.
Due to blockage caused by high-rise buildings, the only
way a mmWave signal starting from a source located at
pS can reach its destination at pD is by traversing street
segments [31]. More specifically, the transmitted signal is
spatially diversified through all sets of consecutive, non-
repeating segments from the source to the destination. Then,
a (dominant) propagation path is defined as every such
set of traversed street segments whose aggregate length is
equal to the minimum `1-distance from the source to the
destination. We adopt the convention of [31], where the Line-
of-Sight (LoS) portion of every path is the segment between
the transmitting node and the nearest intersection, while the
remaining segments comprise the Non-Line-of-Sight (NLoS)
portion of the path. All considered paths have common LoS
portion, while their NLoS portions differ.

To overcome severe signal attenuation, we deploy clusters
of relays across certain street segments, which will beamform
the signal to its destination. For simplicity in exposition,
we assume that each cluster contains evenly spaced relays.
We note, though, that our approach works for any spatial
relay distribution within each cluster. At each time instance,
only one relay from every cluster, namely, the cluster rep-
resentative, is active. The relays are connected via fiber to
a central node via which they can exchange information. A
propagation path between the source or destination and any
of the cluster representatives, as well as the corresponding
LoS and NLoS portions of the path are all defined in exactly
the same fashion as in the previous paragraph.

Let Nc be the number of available relay clusters in the net-
work. Also, let Lr be the number of all possible signal paths
from pS to relay cluster r = 1, . . . , Nc. The channel between
pS and a relay in cluster r located at p is experienced as a
combination of all channels across all possible paths between
pS and p. In particular, under the flat fading assumption, the
complex channel gain from pS to point p along path i can be
decomposed as [37]

fri(p, t) , fPLri (p)︸ ︷︷ ︸
path−loss

fSHri (p, t)︸ ︷︷ ︸
shadowing

fMF
ri (p, t)︸ ︷︷ ︸
multi−path

, (1)

where fPLri (p) is the path-loss component, fSHri (p, t) the
large-scale fading component (shadowing), and fMF

ri (p, t)
the small-scale fading component (multi-path). A similar
decomposition holds for the channel gri(p, t) from p to

pD, along path i = 1, . . . ,Kr, where Kr is the number of
respective signal paths from cluster r to the destination.

In the mmWave setting, the channel path-loss does not
depend on the Euclidean distance between pS and p, but
rather on their absolute locations (Manhattan distance), and is
therefore parametrized separately for each segment [7], [31],
[32], [35], [36], [38]. Let the set of all individually traversed
street segments τ of path i to cluster r be denoted by Sfri,
which includes the segment τS where the source is located,
but does not include segment τr where cluster r is located.
Similarly, the set of traversed segments of path i from cluster
r to the destination, including the segment τD the destination
is located but excluding segment τr, is Sgri. In the following,
we consider only the source-relay channels fri, for every path
i associated with cluster r. The discussion for gri follows in
a completely analog manner, and is omitted for brevity.

As in [31], we also assume an additional loss ∆ occurring
at every intersection, i.e., every propagation path exhibits a
total intersection loss ∆Nf

r , where Nf
r are the number of

traversed intersections from pS to p. Therefore, the overall
path-loss component of channel fri is expressed as

fPLri (p)=10−
∆N

f
r

2·10 d
−αL2
τS (dfτr(p))−

αN
2

∏
τ∈Sfri\{τS}

d
−αN2
τ , (2)

where dτS denotes the length of the LoS segment τS , dfτr (p)
is the distance between the intersection of segment τr asso-
ciated with fri and location p in τr (that is, the intersection
of τr which is `1-closest to the source), and dτ denotes the
length of the τ -th street segment. We assume that a relay
cannot be located exactly on an intersection, so dfτr 6= 0.

Likewise, the shadowing and multi-path components of the
channel experienced across each path may be decomposed on
a per-segment basis as

fSHri
(
p, t
)

= sfτr (p, t)
∏
τ∈Sfri

sτ (t) and (3)

fMF
ri

(
p, t
)

= qfτr (p, t)
∏
τ∈Sfri

qτ (t), (4)

where sτ and qτ are the shadowing and multi-path terms
experienced across segment τ .

Consequently, by expressing the magnitude of (1) in loga-
rithmic scale (dB), we obtain the additive model

Fri (p, t), 10log10

(∣∣fPLri (p) · fSHri (p, t) · fMF
ri

(
p, t
)∣∣2)

, afri(p) + bfri(p, t) + cfri(p, t) (5)

where

−afri(p),αL10log10dτS+ αN
∑
τ∈Sfri

10log10dτ

+ aN10log10d
f
τr (p) + ∆Nf

r , (6)

bfri(p, t),
∑
τ∈Sfri

10log10|sτ (t)|2 + 10log10|sfτr (p, t)|
2

,
∑
τ∈Sfri

βτ (t) + βfτr (p, t) and (7)
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cfri(p, t),
∑
τ∈Sfri

10log10|qτ (t)|2 + 10log10|qfτr (p, t)|
2

,
∑
τ∈Sfri

ξτ (t) + ξfτr (p, t). (8)

We should note that in the above equations, the combined
shadowing components pertaining to segments without relays
have been separated from the respective term referring to
the segment containing the relay cluster. Those terms exhibit
distinct statistical behavior, and will be considered separately.

In addition to the above, for every time slot t, we assume
a phase term ej2πφτ (t) for each distinct segment τ ∈ Sfri,
r = 1, . . . , Nc, i = 1, . . . , Lr, where each φτ (t) is uniformly
distributed in [0, 1]. Modeling the phase as a uniformly
distributed process and independent of the respective channel
magnitude is a standard assumption in the literature, which
heuristically follows from the statistical structure of the well-
known Rayleigh fading model [37]. Additionally, as phase
varies rapidly both in time and space, phase correlations
are difficult to capture, therefore model, let alone exploit
in statistical prediction. This fact consequently justifies our
phase whiteness assumption, in both time and space. Note
that phase whiteness is a standard assumption in the liter-
ature, and in various contexts (see, e.g., [37] [39]). Simi-
larly, for every time slot t and every location p, we assume
another phase term φfτr (p, t), also uniformly distributed in
[0, 1]. Across all time slots, all segments, and all locations,
all phase components are mutually independent, and also
independent of the respective channel magnitudes, as well.
Then, the channel fri(p, t) can be reconstructed as

fri(p, t) = e
ln(10)Fri(p,t)

20 ej2πΦfri(p,t), (9)

where Φfri(p, t) ,
∑
τ∈Sfri

φτ (t) + φfτr (p, t).
For all segments, we assume a log-normal distribution for

modeling shadowing and multi-path fading [11]. The channel
paths fri, i = 1, . . . , Lr, are statistically dependent, as they
might traverse common segments. Still, it is reasonable to
model all shadowing and multi-path components as being
mutually independent across different segments, since each
segment will exhibit distinct spatial features.

However, within each segment τ ∈ Sfri, βτ (t) is assumed
to be zero mean and jointly Gaussian in time, with correlation
between two time slots k and l given by

E[βτ (k)βτ (l)] , η2e−|k−l|/γ , (10)

where η2 is the shadowing power and γ the correlation time
[22]. Further assuming that the multi-path component qτ (t)
is white in time with variance σ2

ξ [39], the combined log-
magnitude terms zτ (t) , βτ (t) + ξτ (t), t = 1, . . . , NT are
jointly Gaussian with mean zero and covariance

Στ , η2


1 . . . e−(NT−1)/γ

...
. . .

...
e−(NT−1)/γ . . . 1

+σ2
ξINT

, η2T + σ2
ξINT ∈ RNT×NT . (11)

Likewise, the term βfτr (p, t), corresponding to the segment
where cluster r is located, is assumed to be jointly Gaussian,
both in space and time. Specifically, we assume that the
individual relays of cluster r can be located at a discrete set
of δ positions across the segment τr. At two such positions,
say pm and pn, and between any two time slots k and l, the
spatiotemporal correlation of βτr (p, t) is defined as [22]

E[βfτr (pn, k)βfτr (pm, l)] , KFF (pn,pm)e−|k−l|/γ , (12)

where the spatial kernel KFF is given by

KFF (pn,pm) , η2e−‖pn−pm‖2/β . (13)

We further assume that the "incoming" and "outgoing" shad-
owing terms βfτr (p, t) and βgτr (p, t) at positions pm and pn
and between time slots k and l are themselves correlated as

E[βfτr (pn, k)βgτr (pm, l)] , KFG(pn,pm)e−|k−l|/γ , (14)

where the cross-correlation kernel KFG is defined as

KFG(pn,pm) , η2e(ε‖pn−pm‖2−dmax)/β , (15)

with ε = 1 for dfτr (pm)+dgτr (pn) ≥ dfull and ε = −1 other-
wise, and where dfull is the length of segment τr, and dmax
is the furthest possible distance between two discrete relay
positions of a cluster. This kernel describes the correlation
between the incoming and outgoing channels at each cluster,
at different locations and at different time slots. Intuitively,
correlation should be proportional to the size of the part of
the segment which is traversed by both channels, if such a
part exists (see Fig. 2c). Otherwise, as the distance between
the locations where the two channels are respectively expe-
rienced increases, their correlation should be decreasing (see
Fig. 2b). The proposed kernel captures precisely the behavior
outlined above, while resulting in a valid cross-covariance
structure for βfτr and βgτr . As above, assuming that qfτr (p, t)
and qgτr (p, t) are both white in both space and time, as well
as mutually independent, the collection of combined terms[

zfτr (pi, t)
zgτr (pi, t)

]
,

[
βfτr (pi, t) + ξfτr (pi, t)
βgτr (pi, t) + ξgτr (pi, t)

]
, (16)

for i = 1, . . . , δ and t = 1, . . . , NT , are Gaussian with mean
zero and covariance Στr ∈ R2δNT×2δNT given by

Στr , T⊗K + σ2
ξI2δNT , (17)

where ⊗ indicates Kronecker product, and the per-slot cross-
covariance matrix K ∈ R2δ×2δ is defined as

K ,

[
KFF KFG
KFG KGG

]
, (18)

where, overloading notation, KFF , KGG and KFG are cor-
relation matrices corresponding to the kernels (13) and (15),
respectively, each evaluated on all δ2 pairs of possible posi-
tions across segment τr, according to some common order.
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dfτr (pm) dgτr (pn)

βfτr (pm, t) βgτr (pn, t)

dmax

dfull

(a)

(b)

(c)

βfτr (pm, t) βgτr (pn, t)

pm pn≡

pnpm

pn pm

βgτr (pn, t)
βfτr (pm, t)

dfτr (pm) dgτr (pn)

dfτr (pm)
dgτr (pn)

FIGURE 2. Cross-correlation structure of the incoming and outgoing channel
terms βfτr (pn, t), βgτr (pm, t) when (a) dfτr (pm) + dgτr (pn) = dfull, (b)
dfτr (pm) + dgτr (pn) < dfull, and (c) dfτr (pm) + dgτr (pn) > dfull, for
cluster r with δ = 3 relay positions, at a common time slot t.

III. JOINT BEAMFORMING AND RELAY SELECTION
Determining the cluster topology, i.e., the number of de-
ployed clusters as well as their locations is an important
problem that will be studied in our future work, and could
draw from current literature on optimal relay placement [25],
[40], [41]. Our proposed scheme operates assuming that the
clusters change at a low rate, and focuses on the time period
over which the clusters have been optimally determined
and are fixed. During that time, the statistical model of the
channel stays the same; however, the channel itself changes.
Therefore, assignment of new clusters is necessary only
when "coarse-grained" features of the communication system
change, such as the locations of the source and destination,
the ergodic properties of the communication channel, and
other similar statistics. Then, cluster assignment should be
performed at a coarser time scale than the change of the
individual relay channel realizations. For the duration of a
communication task, the aforementioned features typically
do not change rapidly, and therefore the cluster does not need
to change, justifying the need for a relay selection scheme
that operates at a per time-slot basis.

In every time slot, the proposed system jointly performs
beaforming and relay selection, by addressing a 2-stage
stochastic problem [22]. Before going into the details (and
the advantages) of each stage separately, we should note that
although the 2-stage problem refers to the necessary actions
needed to be taken during a single time slot, in practice
these actions refer to two consecutive time slots, due to the
availability of the required CSI. More specifically, during
time slot t, both current beamforming weights of the cluster
representative are calculated (corresponding, as discussed

below, to the 2nd stage problem at time slot t), and the
relays from all clusters to be selected at the next time slot are
determined (which corresponds to the 1st stage problem at
time slot t+1). Both tasks (beamforming and relay selection)
are based on current CSI, as well as past CSI of cluster
representatives selected up to time slot t.

We assume that 2-hop relaying is used to assist the commu-
nication between pS and pD. The whole network is assumed
to operate forNT time slots. In each time slot t = 1, . . . , NT ,
the source at pS transmits the signal

√
PSs(t), where s(t)

is an information symbol with E[|s(t)|2] = 1, and PS > 0
the source transmission power. The signal received at the
representative relay of each cluster r, located at pr(t) is,

Rr(t) =

Lr∑
i=1

√
PSfri(t)s(t) + nr(t), (19)

where nr(t) ∼ CN (0, σ2) is the reception noise at cluster
r. Working in an AF fashion, each cluster representative
modulates its received signal Rr(t) by a complex weight
wr(t) and re-transmits it. Note that a mmWave signal arriving
at pD directly from the source and without the help of a
relay has negligible power, and can be ignored. Therefore,
the aggregate signal received at the destination from all relay
representatives is

yD(t) =

Nc∑
r=1

Kr∑
k=1

wr(t)grk(t)Rr(t) + nD(t)

=
√
PS

Nc∑
r=1

wr(t)

Kr∑
k=1

Lr∑
i=1

grk(t)fri(t)s(t)︸ ︷︷ ︸
signal

+

Nc∑
r=1

wr(t)

Kr∑
k=1

grk(t)nr(t) + nD(t)︸ ︷︷ ︸
interference+ destinationnoise

, (20)

where nD(t) ∼ CN (0, σ2
D) is the reception noise at pD.

A. OPTIMAL BEAMFORMING FOR 2-HOP RELAYING
We extend the distributed relay beamforming schemes stud-
ied in [42], [43], to the significantly more complex set-
ting of urban mmWave relay networks. Here, distributed
beamforming is considered for enforcing relay cluster co-
operation, such that all individual signal paths forwarded
from all relay clusters are combined constructively at the
destination. Although the solution of the beamforming stage
for the mmWave communication setting studied herein is
a straightforward manipulation of the expressions found in
the literature pertaining to the free-space communication
scenario, [42], the result is interesting because it shows the
explicit dependence of the optimal beamforming weights and
achievable SINR on the aggregate mmWave channels from
all propagation paths.

At every time slot t, the goal is to obtain the respective
beamforming weights to be used by each cluster, w(t) ,
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[w∗1(t), . . . , w∗Nc(t)]
T ∈ CNc×1, such that the SINR at pD

is maximized, subject to a total transmission power budget
PC > 0 over all relay clusters. Define the vectors

fr(p, t) , [fr1(p, t), . . . , frLr (p, t)]
T ∈ CLr×1, (21)

gr(p, t) , [gr1(p, t), . . . , grKr (p, t)]
T ∈ CKr×1, (22)

r = 1, . . . , Nc. Then, after dropping dependence on (t) and
(pr(t), t) for brevity, the SINR is maximized by solving [42]

maximize
w

wHRw

wHQw + σ2
D

subject to wHDw ≤ PC
, (23)

where

R , PShhH, h , [1Tg11
Tf1, . . . ,1

TgNc1
TfNc ]

T, (24)

D , PSdiag
(
|1Tf1|2, . . . , |1TfNc |2

)
+ σ2INc and (25)

Q , σ2diag
(
|1Tg1|2, . . . , |1TgNc |2

)
(26)

and 1 is the all-ones vector. A crucial technical property of
problem (23) is that its optimal can be explicitly expressed as
[22], [42]

V (t) =

Nc∑
r=1

PCPS |1Tfr|2|1Tgr|2

PSσ2
D|1Tfr|2 + PCσ2|1Tgr|2 + σ2σ2

D

=

Nc∑
r=1

VI
(
Sr(pr(t), t)

)
, (27)

where Sr
(
pr(t), t

)
is a vector of all random variables re-

ferring to the shadowing, multi-path, and phase terms of
all unique segments traversed for all paths from pS to pD,
which also pass through each cluster representative, located
at pr(t). As can be seen from (27), V (t) depends on the
relay positions at time slot t. Thus, by optimally positioning
the relays, V (t) can be further maximized. This problem is
explored in the next subsection.

Interestingly enough, it turns out that the optimal beam-
forming vector that achieves (27) enjoys an explicit form
similar to that used in the free-space scenario [42], i.e.,

wopt(t) =
√
PCD−

1
2

vmax
‖vmax‖2

, (28)

where the alignment vector vmax ∈ CNc×1 is defined as

vmax,


PS1Tg∗11Tf∗1

PSσ2
D|1Tf1|2 + PCσ2|1Tg1|2 + σ2σ2

D
...

PS1Tg∗Nc1
Tf∗Nc

PSσ2
D|1TfNc |2 + PCσ2|1TgNc |2 + σ2σ2

D

, (29)

and where |1Tfr|2 and |1Tgr|2 are the incoming and outgoing
aggregate channels at pr, respectively. In other words, each
cluster representative at pr does not need to estimate the
individual channels from every propagation path, but rather
only the aggregate channel from all propagation paths. In
practice, this can be computed by the selected relay via the
exchange of pilots.

One may also observe that, while the i−th element of
vmax can be estimated by the i-th relay only, the vector
norm in (28) involves the source and destination channels of
all cluster representatives who will beamform at the current
time. Therefore, that scalar will have to be computed cen-
trally and then distributed to all clusters. This can be done
through a high-speed, optical fiber based, backhaul network,
that connects all relay clusters, as well as all relays within
a cluster, with each other [33], [44]. Clearly, for the source
and destination which are, e.g. moving vehicles, no wired
connection to the backhaul exists. The beamforming stage
requires O(Nc) operations.

As a final remark, we should note that, in practice, during
this beamforming step, phase synchronization is required to
take care of local oscillator phase offsets. Distributed beam-
forming synchronization is an active field of research [45],
[46], that has also been studied in the context of mmWaves
[47]–[49]. Here, we assume that the backhaul network can
take care of the synchronization between the relay clusters.

B. OPTIMAL RELAY SELECTION FOR 2-HOP RELAYING
At every time slot, each cluster must decide which is the
appropriate relay to be used for beamforming. Typically, this
would first require estimating the respective channel of every
relay in the cluster, and then deciding upon the strongest
one. Clearly, this decision making procedure not only wastes
power and bandwidth during CSI estimation, but also induces
extra delay before optimized communication can take place
within each time slot. This delay is significant, especially if
the number of relays per cluster is large. In this subsection,
we propose a new scheme for adaptive relay selection which
completely avoids this overhead, thus resulting in much
better time slot utilization.

More specifically, the proposed relay selection scheme
is based on transferring the implementation of the relay
selection procedure from the current time slot, to the previous
time slot. In other words, relay selection would be imple-
mented predictively by efficiently exploiting the statistical
model of the mmWave channel, before the respective time
slot starts. As a result, at each time slot, optimal beamforming
is implemented by utilizing the cluster representatives which
were optimally selected during the previous slot. This im-
mediately results in the complete elimination of the “waiting
delay" discussed above; indeed, if predictive relay selection
is sufficiently accurate, then the cluster representatives at
each time slot can be predetermined, before the slot starts.
This means that relay selection and beamforming can be
completely decoupled within each time slot, and thus can be
parallelized; indeed, at each time slot, optimal beamforming
can be implemented simultaneously with optimal predictive
relay selection affecting the next time slot. In addition to
eliminating the “waiting delay", the proposed scheme also
enables a substantial reduction of the CSI estimation over-
head required for relay selection, as well as significant power
savings. See Section IV for a more detailed discussion.

We now describe the proposed relay selection scheme in

VOLUME 4, 2016 7



detail. As described above, at time slot t, we are interested
in deciding on the best relay representatives from all clusters
to participate in beamforming at time slot t + 1, such that
the networkwide SINR, V (t + 1), is maximized. However,
at the current time slot t, future CSI needed for evaluating
V (t + 1) is not yet available. Nevertheless, a reasonable
causal criterion for optimal relay selection is to maximize
a projection of V (t+ 1) on information available at time slot
t. Following this path, we propose to maximize an MMSE
predictor of V (t + 1) relative to the collection Cr(t) of all
magnitude CSI, or RSS, from the segments of all propagation
paths associated with all previously selected representatives
of cluster r, as well as the positions of the representatives
themselves, up until and including t. Then, due to the additive
structure of (27), each cluster r can independently solve

maximize
p

E
[
VI(Sr(p, t+ 1))|Cr(t)

]
subject to p ∈ Cr(t)

, (30)

where Cr (·) constitutes the set of candidate relays within the
cluster which can potentially be selected. This set can either
be unconstrained, including any relay within the cluster, or
constrained to only a subset of relays within the cluster.
As can be seen by (30), our approach exploits spatial and
temporal dependencies of channel shadowing, an otherwise
negative effect imposed by the communication medium, in
order to actually benefit network QoS by predicting future,
one-step-ahead SINR.

Next, define the sets Sfr = ∪Lri=1S
f
ri and Sgr = ∪Kri=1S

g
ri.

Then, at every feasible location p ∈ Cr(t), the objective of
(30) may be expressed as

E[VI(Sr(p, t+ 1)) | Cr(t)]

=

∫
VI(p, s)pSr(p,t+1)|Cr(t)(s)ds,

(31)

where, dropping dependence on (p, t + 1), VI may be reex-
pressed in a more integration-friendly form as

VI(·,Zfr , ϕfr ,Zgr , ϕgr)

=
PCPSF

(
Zfr , ϕfr

)
G
(
Zgr , ϕgr

)
PSσ2

DF
(
Zfr , ϕfr

)
+ PCσ2G

(
Zgr , ϕgr

)
+ σ2σ2

D

,
(32)

with F being a function of the sets Zfr = {zfτr , {zτ}τ∈Sfr },
and ϕfr = {φfτr , {φτ}τ∈Sfr }, corresponding to the combined
shadowing plus multi-path, and phase terms of the unique
segments traversed in all paths between the source and cluster
r, and respectively for G, Zgr and ϕgr . Analytical expressions
for F and G are presented in Appendix A.

By a slightly tedious but straightforward procedure, it may
be shown that the joint conditional density of all random
variables contained in vector Sr(p, t + 1) relative to Cr(t)
can be expressed as (by overloading notation)

pSr(p,t+1)|Cr(t)(Zfr , ϕfr ,Zgr , ϕgr)
= N ([zfτr z

g
τr ];µ

t+1|t
τr (p),Σt+1|t

τr (p))

× U(φfτr ; 0, 1)U(φgτr ; 0, 1)

×
∏

τ∈Sfr ∪Sgr

N (zτ ;µt+1|t
τ , (σt+1|t

τ )2)U(φτ ; 0, 1), (33)

where U(· ; 0, 1) denotes the uniform density on [0, 1], and
where µt+1|t

τr (p), Σ
t+1|t
τr (p), µt+1|t

τ and (σ
t+1|t
τ )2 constitute

the corresponding posterior statistics, each relative to local
CSI at the corresponding segment, respectively. This readily
follows by mutual independence of the corresponding CSI
processes across segments. The derivation of (33) can be
found in Appendix B.

Note that, although phase information at time slot t + 1
is present in (32), the objective (31) is independent of phase
information at past time slots. This is because of the standard
assumption that, for each segment, the phase component of
the channel is white in time and space, and mutually indepen-
dent of the respective phase component of all other segments.
Indeed, one may readily observe that, in (33), all distributions
associated with channel phases are uniform in [0, 1], which is
precisely the prior distribution of all phase components, for
all segments taking part in the communication.

From the discussion above, it follows that tractably evalu-
ating (31) is a challenging task. Of course, as expected, the
first step towards evaluation of (31) is the efficient determi-
nation of the aforementioned predictors. This is the subject
of the next two subsections.

1) Channel Prediction for Cluster-free Segments
The shadowing component of the channel for a cluster-free
segment τ , βτ , is a Gaussian process evolving in time, which
may also be represented as a stable autoregression of order
1. Indeed, it may be easily shown that, at every segment
τ ∈ ∪Ncr=1(Sfr ∪Sgr ), βτ can be represented via the stochastic
difference equation [50]

βτ (t) = κβτ (t− 1) + wτ (t), t = 1, . . . , NT , (34)

where κ , e−1/γ , βτ (0) ∼ N (0, η2), with the latter being
independent of wτ (t)

i.i.d.∼ N (0, (1−κ2)η2), t = 1, . . . , NT .
At the same time, across time slots, the shadowing process

βτ (t) cannot be measured directly. Instead, it may be consid-
ered as corrupted by unpredictable noise, due to the presence
of the multi-path component ξτ (t); indeed, at each time slot
t and segment τ , the term zτ (t) = βτ (t) + ξτ (t) is observed.

Now, for every segment τ ∈ ∪Ncr=1(Sfr ∪ Sgr ), define the
vector

m1:t
τ , [zτ (1), . . . , zτ (t)]T ∈ Rt×1, (35)

which contains all observable zero-mean CSI magnitudes
associated with that segment, up to time t. Then, exploiting
the autoregressive representation of (34), it follows that the
posterior distribution of zτ (t+1) relative to m1:t

τ is Gaussian
with conditional mean and variance given by

µt+1|t
τ = κβt|tτ and (36)

(σt+1|t
τ )2 = κ2ρ

t|t
βτ

+ (1− κ2)η2 + σ2
ξ , (37)
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respectively, where, by definition,

βt|tτ , E[βτ (t)|m1:t
τ ] and (38)

ρ
t|t
βτ

, E[(βτ (t)− E[βτ (t)|m1:t
τ ])2|m1:t

τ ] (39)

are the conditional mean and variance of βτ (t) relative to
m1:t
τ , respectively. Therefore, determination of µt+1|t

τ and
(σ
t+1|t
τ )2 is equivalent to that of βt|tτ and ρt|tβτ , respectively,

for all t = 1, . . . , NT . Again due to the autoregressive
structure of (34), the latter pair of conditional estimates may
be evaluated recursively via a Kalman filter, achieving con-
stant computational complexity per time slot. Specifically, for
every t = 1, . . . , NT , both βt|tτ and ρt|tβτ may be evaluated
recursively via the updates

βt|tτ = κβt−1|t−1
τ +Kt(zτ (t)− κβt−1|t−1

τ ), (40)

ρ
t|t
βτ

= Ktσ2
ξ and (41)

Kt =
κ2ρ

t−1|t−1
βτ

+ (1− κ2)η2

κ2ρ
t−1|t−1
βτ

+ (1− κ2)η2 + σ2
ξ

, (42)

initialized by setting β0|0
τ = 0 and ρ0|0

βτ
= η2, stemming from

the statistics of the initial condition βτ (0). By direct com-
parison of (36) and (37) to the Kalman filter equations (40),
(41) and (42), it is easy to derive an algorithm for the direct
recursive evaluation of µt+1|t

τ and (σ
t+1|t
τ )2, comprised, for

t = 1, . . . , NT , by the dynamic equations

µt+1|t
τ = κ(1−Kt)µt|t−1

τ + κKtzτ (t), (43)

(σt+1|t
τ )2 = (1 + κ2Kt)σ2

ξ + (1− κ2)η2 and (44)

Kt =
(σ
t|t−1
τ )2 − σ2

ξ

(σ
t|t−1
τ )2

, (45)

initialized by setting µ1|0
τ = 0 and (σ

1|0
τ )2 = η2 + σ2

ξ .
For each cluster-free segment τ ∈ ∪Ncr=1(Sfr ∪ Sgr ), the

corresponding Kalman filter may be implemented either
centrally within each cluster, or in a completely distributed
fashion, where each cluster-free segment is responsible for
tracking its own channel, and then for distributing its estimate
to the associated cluster, responsible for the actual relay
selection. Due to its recursive nature, each Kalman filter
required an order of O(1) operations for each cluster-free
segment.

2) Channel Prediction for Segments Containing Clusters
Next, consider the segment τr, containing cluster r. Then, if
we define zf,gτr , [zfτr z

g
τr ]

T and store all CSI measurements
of every previously selected representative of cluster r in

m1:t
τr = [zf,gτr (pr(1), 1), . . . ,zf,gτr (pr(t), t)]

T ∈ R2t×1, (46)

then, for each location p ∈ Cr(t), the mean vector and co-
variance matrix of the Gaussian random vector zf,gτr (p, t+1)
conditioned on m1:t

τr are

µt+1|t
τr (p)=(σ̄1:t

τr (p))T(Σ̄1:t
τr )−1m1:t

τr ∈ R2×1 (47)

Σt+1|t
τr (p)=K̄− (σ̄1:t

τr (p))T(Σ̄1:t
τr )−1σ̄1:t

τr (p) ∈ R2×2, (48)

respectively, where

K̄ =

[
η2 + σ2

ξ η2e−dmax/β

η2e−dmax/β η2 + σ2
ξ

]
, (49)

and Σ̄1:t
τr ∈ R2t×2t, σ̄1:t

τr ∈ R2t×2 are sampled for every time
slot until t from Στr ∈ R2δNT×2δNT , at the positions that
correspond to the distance between the candidate location p
and the respective locations where the incoming and outgoing
channels of segment τr have been experienced so far. We
should note that unlike before, (47) and (48) cannot be
estimated using a Kalman filter, but rather, using full-blown
Gaussian process regression. The dominant operation of (47)
and (48) is the inversion of the covariance matrix Σ̄1:t

τr . The
computational complexity of this inversion is of the order of
O(t3) operations, and grows with time due to conditioning
on past CSI. Nevertheless, the complexity can be reduced
to O(t2), via a classical application of the matrix inversion
lemma; for details, see ([22], section VI).

3) Reduced-Complexity Sample Average Approximation
Having determined the necessary posterior statistics involved
in (33), our next step would be to evaluate the objective
of (30) or, equivalently, the multi-dimensional integral (31).
However, to the best of our knowledge, a closed-form repre-
sentation of (31) is impossible to derive. Therefore, we resort
to a near-optimal approach. In particular, we rely on the SAA
method, and replace (30) by an easily computable surrogate,
constructed via unconditional Monte Carlo sampling.

To define the proposed surrogate to (30), fix p ∈ Cr(t) and
t = 1, . . . , NT , and consider the change of variables (again,
overloading notation)

vτ = (σt+1|t
τ )−1(zτ − µt+1|t

τ ), ∀τ ∈ Sfr ∪ Sgr and (50)

vf,gτr =
(
Σt+1|t
τr (p)

)−1/2(
zf,gτr − µ

t+1|t
τr (p)

)
, (51)

to the integral of (31). Additionally, also define the collec-
tions Vfr , {vf,gτr , {vτ}τ∈Sfr } and Vgr , {vf,gτr , {vτ}τ∈Sgr }.
Then, (31) may be equivalently represented as

E[VI(Sr(p, t+ 1))| Cr(t)]=
∫
V̄
t+1|t
I (p, s)pS̄(s)ds, (52)

where

V̄
t+1|t
I (p,Vfr , ϕfr ,Vgr , ϕgr) (53)

=
PCPSF

t+1|t(p,Vfr , ϕfr )Gt+1|t(p,Vgr , ϕgr)
PSσ2

DF
t+1|t

(
p,Vfr , ϕfr

)
+PCσ2Gt+1|t

(
p,Vgr , ϕgr

)
+σ2σ2

D

with the functions Ft+1|t and Gt+1|t being defined as1

Ft+1|t(p,Vfr , ϕfr )
, F
(
p,
(
Σt+1|t
τr (p)

)1/2
vf,gτr +µt+1|t

τr (p)
∣∣
1
,

{vτσt+1|t
τ +µt+1|t

τ }τ∈Sfr , ϕ
f
r

)
(54)

1If x is a vector, x|i denotes its i-th entry
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and

Gt+1|t(p,Vgr , ϕgr)
,G

(
p,
(
Σt+1|t
τr (p)

)1/2
vf,gτr +µt+1|t

τr (p)
∣∣
2
,

{vτσt+1|t
τ +µt+1|t

τ }τ∈Sgr , ϕ
g
r

)
, (55)

and where S̄ follows the distribution induced by the density

pS̄(Vfr , ϕfr ,Vgr , ϕgr)
= N (vf,gτr ; 0, I2)U(φfτr ; 0, 1)U(φgτr ; 0, 1)

×
∏

τ∈Sfr ∪Sgr

N (zτ ; 0, 1)U(φτ ; 0, 1). (56)

The representation (52) exhibits an important and rather
practically appealing property: The density pS̄ is completely
independent of both p and Cr(t), and all such dependence has
been transferred to V̄ t+1|t

I . Consequently, sampling from pS̄
is greatly facilitated, and this fact is exactly what makes our
proposed SAA-based scheme attractive, whose description
now follows.

Algorithm 1 Joint Beamforming & Relay Selection Scheme
1: for t = 1 : NT do
2: Beamforming (2nd stage of time slot t)
3: Inputs: Channel aggregates |1Tfr|2 and |1Tgr|2.
4: Compute optimal wopt(t) from (28)
5: Relay selection (1st stage of time slot t+ 1)
6: for every cluster r do
7: Inputs: a) RSS {zτ (t)}τ∈Sfr ∪Sgr until t.
8: b) RSS zfτr (t) and zgτr (t) until t.
9: Generate S̄ from (56)

10: for each p ∈ Cr(t) do
11: Compute V̂I(p, t+ 1) from (57)
12: end for
13: Choose pr(t+ 1) ∈ argmaxp∈Cr(t)V̂I(p, t+ 1)
14: end for
15: end for

For each relay cluster r and at every time slot t, the SAA
method works by randomly generating a total of NS sce-
narios, drawn from the distribution induced by pS̄ . Clearly,
due to the special form of pS̄ , this is straightforward to
implement. Then, each scenario S̄(i), i = 1, . . . , NS is used
to evaluate V̄ t+1|t

I , at every possible relay position within the
set of feasible locations, Cr(t). Finally, leveraging (52), the
SAA of (31) is formulated by replacing the expectation in its
objective with an empirical mean as

maximize
p

V̂I(p, t+ 1) ,
1

NS

NS∑
i=1

V̄
t+1|t
I (p, S̄(i))

subject to p ∈ Cr(t)

, (57)

which may be solved by enumeration. The optimal solution
of (57) corresponds to the selected relay at t+ 1.

Note that, following [22], it may be argued that exactly the
same set of scenarios may be used by all relays, in all clusters,

and even at all time slots. This, of course, keeps the sampling
requirements at a bare minimum, networkwide.

In regard to the per cluster computational complexity of
the proposed SAA-based scheme, at each time slot t, the
conditional statistics of the term zf,gτr (·, t+1) relative to m1:t

τr
need to be evaluated, for all r = 1, . . . , Nc. As explained
above, for a single relay of a specific cluster, this requires an
order ofO(t2) operations at time slot t, but since this needs to
be done for all relays of the cluster, we end up with an order
of O(δt2) operations. Additionally, for each of the |Sfr ∪Sgr |
segments (not containing a cluster) associated with cluster r,
O(1) complexity is required due to the recursive form of the
Kalman filter. Therefore, the total computational complexity
of the SAA-scheme for cluster r, in time slot t, is at most of
the order of O(δt2 + |Sfr ∪ Sgr |); in fact, in most cases, this
complexity is often much smaller, since each of the segments
contained in Sfr ∪ Sgr may also be associated with clusters
other than r, as well.

C. 2-STAGE JOINT BEAMFORMING/RELAY SELECTION
Our 2-stage joint beamforming and relay selection scheme is
described in Algorithm 1. At time t, beamforming towards
the destination is performed, which corresponds to the 2nd
stage problem of time slot t. In this stage, the RSS and phases
of the channel aggregates at every cluster representative need
to be centrally collected, in order to compute the optimal
beamforming weights. Within the same time slot t, and in
parallel to beamforming, the 1st stage problem of time slot
t+1 is solved, i.e., every cluster individually selects the relay
to be used for beamforming in the subsequent time slot. In
this stage, in addition to the CSI of the cluster representative
at pr, the relay selection process also requires the CSI of
the unique segments that comprise the propagation paths to
that cluster. This information can be easily acquired via low
cost devices, e.g., channel sounders, placed on every street
segment, and then sent through the backhaul network to the
respective cluster.

In practice, it is sufficient to condition on a window of past
time slots, as opposed to the entire observed RSS history.
Such an approximation is expected to work well even for
a relatively small window size, due to the exponentially
decaying structure of the temporal correlation component of
the channel model. Moreover, depending on the mmWave
channel coherence time, it might be sufficient to follow a
two-timescale design, where the beamforming weights would
be computed in every time slot but relay selection would be
executed over a longer time interval.

IV. OPERATIONAL PHASES OF THE TIME SLOT
In this section, we discuss how the operations of relay selec-
tion and beamforming are scheduled within each time slot,
comparatively for the proposed and ideal selection schemes.

In every time slot of the ideal scheme, relay selection
is always implemented before optimal beamforming; this is
simply due to the fact that acquisition of the current RSS
has to inevitably be performed in the same time slot as
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FIGURE 3. The average SINR observed in every time slot over 10000 independent trial runs, for all policies, when keeping only (a) two (b) four (c) six clusters of
Fig. 1. The horizontal lines indicate the average SINR across all time slots for that respective policy.

beamforming. On the other hand, in the proposed scheme,
relay selection at the current time slot is implemented predic-
tively during the previous time slot, by efficiently exploiting
past RSS observations. As a result, the overhead caused
by the relay selection process can be effectively bypassed,
and optimal beamforming at the current time slot may be
implemented completely in parallel with the predictive relay
selection affecting the next time slot.

Next, let us look at the CSI estimation requirement of each
selection scheme into more detail. In the ideal scheme, the
incoming and outgoing channels of every relay for all clusters
are initially estimated. This requires estimating Nideal =
2δNc distinct channels. Channel estimation is initiated by a
pilot symbol broadcaster from the source, with every relay
of all clusters measuring their RSS. A similar procedure
is done for estimating the respective channels towards the
destination. On the contrary, our proposed scheme requires
estimating the CSI of only the cluster representative, as well
as the CSI of every associated segment τ ∈ Sfr ∪ Sgr ,
for every cluster r = 1, . . . , Nc. Therefore, Nproposed =
2Nc + |∪Ncr=1 Sfr ∪ Sgr | channels have to be estimated, where
| · | denotes the cardinality of a set. In other words, when
δ > 1+ |∪Ncr=1Sfr ∪Sgr |/2Nc, our scheme will always require
less number of channel estimations.

Compared to the ideal, the proposed relay selection
scheme is particularly advantageous in dense network topolo-
gies, where, to account for high channel variability, each clus-
ter needs to include a large number of relays, and the number
of relays per cluster is relatively larger than the number of
segments taking part in the communication. Actually, a dense
network is required even if the shadowing variance is low,
since this implies weaker channel correlation, due to the now
dominant multi-path fading. It is then clear that our proposed
scheme requires significantly fewer channels to be estimated
than the ideal scheme, which in turn leads to reduced channel
estimation overhead.

Note that, while our proposed scheme does incur a com-
putational burden associated with the relay selection process,
due to the need for execution of Algorithm 1, the paralleliza-
tion of relay selection and optimal beamforming in each time

slot not only compensates for that burden, but also naturally
leads to more consistent ergodic performance, as long as the
accuracy of predictive relay selection is adequate. Of course,
this pressumes that the required computational complexity
can be practically implemented within the duration of each
time slot.

V. SIMULATIONS
We examine the performance of the proposed relay selection
scheme using synthetically generated CSI data. For our simu-
lations, we assume the topology and cluster placement of Fig.
1, unless otherwise stated. All segments are of length dfull =
100m. For segments containing a relay cluster, we consider
δ = 50 evenly spaced positions upon which the individual
relays are located. We assume a carrier frequency of 28 GHz,
with path-loss exponent similar to those reported in [5], [36],
i.e. αL = αN = 2.1. The assumed channel parameters are
η2 = 40, γ = 15, β = 10m, ∆ = 10dB, σ2

ξ = 20, σ2 = 1,
and σ2

D = 1. The transmission power (which also includes
the directional antenna gain) is PS = 80dBm and the total
relay power budget is PC = 100dBm. The relay clusters are
connected to a stable power source.

To assess the long term system performance of our SAA-
based system, we compare it against two benchmark relay
selection policies. The first is the ideal policy, where, as
described previously, the best relay from every cluster is
selected and used in beamforming, during the current time
slot. This policy provides an upper bound on the performance
of any admissible policy. The second benchmark is a non-
strategic, randomized policy, where a relay is chosen uni-
formly at random from its cluster to be used in the subsequent
time slot, irrespective of the observed CSI. For the SAA
and randomized policies, we also examine the constrained
neighborhood case, where the only candidate relays are those
in the 4 positions closest to either one of the two cluster
segment edges.

All selection policies were executed over NT = 50 time
slots, with NS = 500 SAA scenarios. This constitutes one
trial of the whole communication task. The QoS achieved
in each time slot, averaged over 104 trials, is shown for all
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policies in Fig. 3b. Note that assessing the performance of the
proposed relay selection policies via averaging is correct and
technically justified; see [22] for details. The superiority of
the SAA policy is evident, as it achieves almost 7.7dB larger
SINR than the randomized policy, while also performing only
2.3dB worse than the ideal policy. This significant result
implies that near optimal selection is achieved by exploiting
one-step ahead SINR prediction, rather than waiting for the
actual future channel values, available at the next time slot.

For the ideal and SAA approach, we also show the his-
tograms of the fraction of times a specific relay was chosen in
every time slot. Observing the ideal policy of Fig. 5, it seems
that there is a tendency to select relays located near either of
the two end points of the cluster, which for relay clusters 2
and 3 is done about 60% of the time. This is more evident in
the SAA approach where at every time slot about 99% of the
total trials choose either of the end point relays.

Under the same channel and simulation parameters, we
varied the number of available clusters. We first considered
the case where the topology consisted only of clusters 1 and
2 of Fig. 1, and another were in addition to the four clusters
of Fig. 1, two more were placed between intersections 6
and 5, and 4 and 7. The average SINR for all policies of
the two and six cluster configurations are plotted in Fig. 3a
and 3c, respectively. Notice that, as compared to Fig. 3b,
the average SINR achieved for the two cluster configuration
performs about 5dB worse for all policies, while for the six
cluster configuration the performance is about 3dB better.
This implies that the more relay clusters present in the city,
the better the overall SINR performance achieved at the
destination. Of course, the SINR results presented in Figs.
3a,3b and 3c translate naturally into similar trends in terms
of the respective achievable ergodic rates.

In Fig. 4a we also examined a topology where two clusters
are placed near the source and two near the destination. This
case can be thought of as directly assisting the source and
destination, fairly. In reality, the probability of this happening
in a city is expected to be low as there will be multiple users
the clusters would need to service. Still, one can observe
that the SINR performance is practically equivalent to that
of Fig. 3c. In other words, the cluster placement problem is
equally important to the performance of the overall system,
and therefore deserves further investigation.

VI. CONCLUSION
This paper considered a set of spatially distributed clusters
of static relays, cooperatively enhancing mmWave commu-
nications in an urban environment. In particular, on a per
time slot basis, one relay from each cluster is selected to
participate in optimal transmit beamforming towards the
destination. In order to decide on the best relay configu-
ration to be used for beamforming, we proposed an adap-
tive, sampling-based, distributed across clusters and of re-
duced complexity relay selection scheme, which efficiently
exploits shadowing-induced spatiotemporal correlations of
the mmWave medium, and can be executed completely in
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FIGURE 4. (a) A different four cluster topology. (b) The average SINR
observed in every time slot for all policies, over 10000 independent trial runs
for the above cluster topology. The horizontal lines indicate the average SINR
across all time slots for that respective policy.

parallel to optimal beamforming-based communication. The
effectiveness of our approach is established via numerical
simulations, which corroborate its superiority against a RSS-
agnostic, purely randomized relay selection policy, as well
as its efficiency relative to a reference, resource demanding
ideal selection scheme. As a byproduct of our results, we
also demonstrated the sensitivity of the proposed system with
respect to spatial cluster placement, confirming that efficient
spatial cluster assignment constitutes an interesting, natural
direction for future research.

.

APPENDIX A

If we assume the set Sfr = ∪Lri=1S
f
ri that contains all unique

segments of all channels fi leading to relay r, as well as the
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(a) (b) (c) (d)

FIGURE 5. Ideal policy: fraction of times over 10000 independent trials that a relay was chosen in each time slot, for relay clusters (a) 1 (b) 2 (c) 3 (d) 4 of Fig. 1.
For each trial the same relay is initially selected in all clusters, so time slot t = 1 is omitted from the histograms.

(a) (b) (c) (d)

FIGURE 6. SAA policy: fraction of times over 10000 independent trials that a relay was chosen in each time slot, for relay clusters (a) 1 (b) 2 (c) 3 (d) 4 of Fig. 1.
For each trial the same relay is initially selected in all clusters, so time slot t = 1 is omitted from the histograms.

sets Zfr = {zτ}, τ ∈ Sfr and set ϕfr = {φτ}, we have that:

F
(
Zfr , ϕfr

)
= |1Tfr|2

= |fr1|2 + . . .+ |frLr |2 + fr1f
∗
r2 + fr1f

∗
r3 + ....

= |fr1|2 + . . .+ |frLr |2 + |fr1|ejΦr1 |fr2|e−jΦr2 + ...

=

Lr∑
i=1

|fri|2 + |fr1||fr2|(ej(Φr1−Φr2) + ej(Φr2−Φr1)) + . . .

=

Lr∑
i=1

Lr∑
k=1

e
χ
2 Frie

χ
2 Frk cos(Φfri − Φfrk)

=

Lr∑
i=1

Lr∑
k=1

exp

[
χ

2

(
afri(pi)+zfτr (pi, t)+

∑
τ∈Sfri

zτ (t)

)]
× exp

[
χ

2

(
afrk(pk)+zfτr (pk, t)+

∑
τ∈Sfrk

zτ (t)

)]
× cos

(
φfτr (pi, t)−φ

f
τr (pk, t)

+
∑

τ∈Sfri
φτ (t)−

∑
τ∈Sfrk

φτ (t)

)
where χ = ln(10)/10. Note that in the above, the left hand
side refers to the unique segments traversed in all paths, while
the equation on the right hand side to the ordered segments
in a path. A similar expansion holds for G(Zgr , ϕgr).

APPENDIX B
In the following, superscripts "Zr" refer to amplitude compo-
nents, and superscripts "ϕr" refer to phase components of the
involved aggregate channel. Then, for every pair (p, t + 1),
the posterior density of Sr(p, t + 1) relative to the RSS

history Cr(t) is given by (note that we symbolically drop
argument dependence in the involved densities)

pSr(p,t+1)|Cr(t) =
p(Sr(p,t+1), Cr(t))

pCr(t)

=
pZr(Sr(p,t+1), Cr(t))p

ϕr
Sr(p,t+1)

pZrCr(t)

=
pZrSr(p,t+1)|Cr(t)p

Zr
Cr(t)p

ϕr
Sr(p,t+1)

pZrCr(t)

= pZrSr(p,t+1)|Cr(t)p
ϕr
Sr(p,t+1),

and (33) readily follows by independence of the involved
shadowing plus multi-path channel components across dis-
tinct segments, also implying conditional independence of
those components across segments, relative to Cr(t).
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