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Abstract—We consider the problem of enhancing Quality-of-
Service (QoS) in mobile relay beamforming networks, by opti-
mally controlling relay motion, at the presence of a dynamic chan-
nel. We assume a time slotted system, where the relays update
their positions before the beginning of each time slot. Modeling
the wireless channel as a Gaussian spatiotemporal stochastic field,
we propose a novel 2-stage stochastic programming approach for
optimally specifying relay positions and beamforming weights,
such that the expected QoS of the network is maximized, based
on causal Channel State Information (CSI) and under a total
relay transmission power budget. This results in a scheme where,
at each time slot, apart from optimally beamforming to the
destination, the relays also optimally decide their positions at the
next time slot, based on their causal experience. The stochastic
program considered is shown to be equivalent to a set of simple
subproblems, which may be solved in a naturally distributed
fashion, one at each relay. However, exact evaluation of the
objective of each subproblem is impossible. To mitigate this issue,
we propose three efficient, theoretically grounded surrogates to
the original subproblems, which rely on the Sample Average
Approximation method, the Gauss-Hermite Quadrature, and
the Method of Statistical Differentials, respectively. The efficacy
and several interesting properties of the proposed approach are
demonstrated via numerical simulations. In particular, we report
a substantial improvement of about 80% on the average network
SINR at steady state, compared to randomized relay motion. This
shows that strategic relay motion control can result in substantial
performance gains, as far as QoS maximization is concerned.

Index Terms—Spatially Controlled Relay Beamforming, Net-
work Mobility Control, Network Utility Optimization, Dis-
tributed Cooperative Networks, Stochastic Programming.

I. INTRODUCTION

D Istributed, networked communication systems, such as
relay beamforming networks [3]–[9] (e.g., Amplify &

Forward (AF)) are typically designed without explicitly con-
sidering how the positions of the networking nodes might
affect communication quality. However, communication is
dependent on node positioning and, further, in most practical
settings, the Channel State Information (CSI) observed by
each node, per channel use, is both spatially and temporally
correlated. It is, therefore, reasonable to ask if and how system
performance could be improved by controlling the positions
of certain network nodes, exploiting the spatiotemporal depen-
dencies of the wireless medium.
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Autonomous node mobility has been proposed as effective
means of enhancing performance in various distributed net-
working settings. In [10], optimal transmit AF beamforming
has been combined with potential field based relay mobil-
ity control in multiuser networks, minimizing relay transmit
power, while respecting certain Quality-of-Service (QoS) con-
straints. In [11], decentralized jammer motion control has been
jointly combined with noise nulling and cooperative jamming,
for maximizing network secrecy rate. In [12], optimal relay
positioning has been studied in systems where multiple relays
deliver information to a destination, at the presence of an
eavesdropper, with a goal of maximizing or achieving a target
level of ergodic secrecy. In the complementary context of com-
munication aware (comm-aware) robotics, node mobility has
been exploited in distributed robotic networks for maintaining
reliable, in-network communication connectivity [13]–[17],
and optimizing network energy management [18]. Networked
node motion control has also been exploited in special purpose
applications, such as networked robotic surveillance [19] and
target tracking [20].

In [10]–[12], the links among network nodes (or related
statistics) are assumed to be available in the form of static
channel maps, during the whole motion of the jammers/relays.
However, this is oversimplifying in scenarios where the chan-
nels change significantly in time and space [21]–[23]. Most
recently, in [24], unmanned vehicle motion control was con-
sidered for minimizing energy requirements in a transmit (up-
link) beamforming scenario, assuming a commonly employed,
spatially varying “log-normal” channel model [23].

In this paper, we consider the problem of optimally and dy-
namically updating relay positions in single source/destination
relay beamforming networks, in a fully dynamic, space-time
varying channel environment. Different from [10]–[12], we
model the wireless channel as a spatiotemporal stochastic
field; this approach may be seen as a versatile extension of the
channel model of [23]. We then propose a 2-stage stochastic
programming approach, optimally specifying relay positions
and beamforming weights, such that the expected Signal-to-
Interference+Noise Ratio (SINR) or QoS at the destination
is maximized, on the basis of causal CSI, and subject to a
total power constraint at the relays. At each time slot, the
relays not only beamform to the destination, but also optimally
predictively decide their positions at the next time slot, based
on their experience so far. This novel, cyber-physical system
approach to relay beamforming is termed here as Spatially
Controlled Relay Beamforming.

First, it is shown that the proposed 2-stage problem is equiv-
alent to a set of two dimensional subproblems, which can be
solved in a distributed fashion, one at each relay, without the
need for intermediate exchange of messages among the relays.
However, the objective of each subproblem turns out to be
impossible to evaluate analytically. In order to overcome this
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difficulty, we propose three theoretically sound and numeri-
cally efficient approximations to each subproblem, each acting
as a surrogate to the former. Each of the proposed surrogates
relies on the so-called Sample Average Approximation (SAA)
method [25], the Gauss-Hermite Quadrature (GHQ) [26], and
the Method of Statistical Differentials [27], respectively, and
features a natural trade-off between performance and accuracy.
If applicable, rigorous theoretical analysis is also presented.

The efficacy of the proposed approach is confirmed via
extensive numerical simulations. In particular, we reveal an
interesting and rather useful feature of the proposed system:
Although we optimize a 1-step lookahead objective at each
time slot (i.e., our formulation is myopic), the expected net-
work QoS exhibits an increasing trend across time slots, under
optimal decision making at the relays. Most importantly, we
experimentally report an average improvement of about 80%
on the average network SINR at steady state, compared to
purely randomized relay motion, showing that strategic relay
mobility can result in substantial performance gains, as far
as enhancement of QoS is concerned. The resilience of the
proposed approach against random motion failures in the
network is also experimentally studied; more specifically, it
is demonstrated that, while in steady state, motion failures do
not result in significant system deterioration, as long as the
temporal correlation of the channel is sufficiently strong.

An example of a real-world application of our problem
setting may be found in [17], where multiple robotic routers,
noncollaboratively relaying information between a source and
a destination in a multihop fashion, are dynamically controlled
in space, so that either the end-to-end Bit Error Rate (BER) or
power requirements of the system are optimized. Our problem
is similar, in the sense that we also consider maximization
of QoS between a source and a destination. However, in our
setting, and different from [17], the mobile relays collabora-
tively beamform to the destination in a 2-hop, AF fashion.
The framework proposed in [17] has been experimentally
confirmed (also in [17]), and the channel model assumed in
[17] constitutes a reduced, temporally static version of the time
varying model considered herein. Thus, our channel model
includes that of [17] as a special case, and our approach could
be readily applied to the experimental setting of [17], as well.

More generally, spatially controlled relay beamforming
finds relevance in several important application domains. Let
us present two examples. The first one is improving network
QoS in urban and suburban environments (e.g., a big city),
where the relays would be moving either on the ground, or
in the air, but at relatively low altitude. Particular applications
include search-and-rescue missions, surveillance, high quality
environmental sampling, reconfigurable and infrastructureless
sensor networks, on-demand industrial monitoring, wide area
WiFi, and physical layer security. Another application domain
of interest is enabling reliable communications in the area of
a battle field. In this case, wireless relays would be dynam-
ically deployed in space (either ground or air), in order to
improve jammed communications, compensate for destroyed,
or aid existing infrastructure, or even optimally intercept
enemy communications. Common characteristic of the afore-
mentioned applications is potential mobility of the respective

communication endpoints. In such cases, wireless networking
is essential, and this paper provides a novel methodological
approach for substantially improving communication quality
by introducing and exploiting mobility of the involved relaying
networking nodes. For further details on feasibility, usefulness
and necessity of spatially controlled WiFi communications, the
reader is also referred to the recent experimental study [28].

The paper is organized as follows. Sections II and III in-
troduce the networking model and the spatiotemporal channel
model under study, respectively. The scheduling protocol of
the spatially controlled system, and our problem formulation
are presented in clear order in Section IV. Our approximate
solution methodology is developed in Section V, along with
relevant theoretical justification. Section VI briefly discusses
computational issues of the proposed approach. In Section VII,
we present our numerical simulations, along with the relevant
discussion. Finally, Section VIII concludes the paper.

Notation: Matrices and vectors will be denoted by bold-
face uppercase and boldface lowercase letters, respectively.
Calligraphic letters and formal script letters will denote sets
and σ-algebras, respectively. The operators (·)∗, (·)T and
(·)H will denote conjugation, transposition and conjugate
transposition, respectively. The `p-norm of x ∈ Rn is ‖x‖p ,
(
∑n
i=1 |x (i)|p)1/p, for N 3 p ≥ 1. For N 3 N ≥ 1, SN , SN+(+)

will denote the sets of symmetric and symmetric positive
(semidefinite) matrices, respectively. The N -dimensional iden-
tity operator will be denoted as IN . Also, we define J ,

√
−1,

N+ , {1, 2, . . .}, N+
n , {1, 2, . . . , n}, Nn , {0} ∪ N+

n and
Nmn , N+

n \ N+
m−1, for positive naturals n > m.

II. SYSTEM MODEL

On a compact, square planar region W ⊂ R2, we consider
a wireless cooperative network consisting of one source,
one destination and R ∈ N+ assistive relays, as shown
in Fig. 1. Each entity of the network is equipped with a
single antenna, being able for both information reception
and broadcasting/transmission. The source and destination
are stationary (for simplicity) and located at pS ∈ W and
pD ∈ W , respectively, whereas the relays are assumed to
be mobile; each relay i ∈ N+

R moves along a trajectory
pi (t) ∈ S ⊂ W − {pS ,pD} ⊂ W , where, in general,
t ∈ R+, and where S is a finite set. We also define the

supervector p (t) ,
[
pT

1 (t) pT
2 (t) . . . pT

R (t)
]T
∈ SR ⊂

R2R×1. Additionally, we assume that the relays can cooperate
with each other, either by exchanging local messages, or by
communicating with a local fusion center, through a dedicated
channel. Hereafter, all probabilistic arguments made below
presume the existence of a complete base probability space of
otherwise arbitrary structure, defined by a triplet (Ω,F ,P).

Assuming that a direct link between the source and destina-
tion does not exist, the relays are assistive to the communica-
tion, operating in a classical, two phase AF relaying mode. Fix
a T > 0, and divide the time interval [0, T ] into NT time slots,
with t ∈ N+

NT
denoting the respective time slot. Let s (t) ∈ C,

with E
{
|s (t)|2

}
≡ 1, denote the symbol to be transmitted

at time slot t. Also, assuming a flat fading channel model, as
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Figure 1: A concept schematic of the system model considered.

well as channel reciprocity and quasistaticity in each time slot,
let the sets {fi (t) ∈ C}

i∈N+
R

and {gi (t) ∈ C}
i∈N+

R
contain

the random, spatiotemporally varying source-relay and relay-
destination channel gains, respectively. These are further as-
sumed to be realizations of the random channel fields or maps
f (p, t) and g (p, t), respectively, that is, fi (t) ≡ f (pi (t) , t)
and gi (t) ≡ g (pi (t) , t), for all i ∈ N+

R and for all t ∈ N+
NT

.
Then, if P0 > 0 denotes the transmission power of the source,
during AF phase 1, the signals received at the relays can be
expressed as ri(t),

√
P0fi(t) s(t) +ni(t) ∈ C, for all i ∈ N+

R

and for all t ∈ N+
NT

, where ni (t) ∈ C, with E
{
|ni (t)|2

}
≡

σ2, constitutes a zero mean noise process at the i-th relay,
independent across relays. During AF phase 2, all relays
modulate their received signal by a weight wi (t) ∈ C, i ∈ N+

R,
and simultaneously retransmit it. The signal received at the
destination is y (t) ,

∑
i∈N+

R
wi(t) gi(t) ri(t)+nD(t), and can

be further expressed as

y (t) ≡
√
P0

∑

i∈N+
R

wi(t) gi(t) fi(t) s(t)

︸ ︷︷ ︸
signal (transformed)

+
∑

i∈N+
R

wi(t) gi(t)ni(t) + nD(t)

︸ ︷︷ ︸
interference + reception noise

∈ C, (1)

for all t ∈ N+
NT

, where nD (t) ∈ C, with E
{
|nD (t)|2

}
≡ σ2

D,

constitutes a zero mean, white noise process at the destination.
In the following, it is assumed that the channel fields

f (p, t) and g (p, t) may be statistically dependent both spa-
tially and temporally, and that, as usual, the processes s (t),
[f (p, t) g (p, t)], ni (t) for all i ∈ N+

R, and nD (t) are mutu-
ally independent. Also, we will assume that, at each time slot
t, CSI {fi (t)}

i∈N+
R

and {gi (t)}
i∈N+

R
is known exactly to all

relays. This may be achieved through pilot based estimation.

Remark 1. The assumption that the source and destination
are stationary is made for technical simplicity. In fact, both

source and destination are allowed to be mobile, as long
as their trajectories are known to the relays across all time
slots, one slot ahead in the future. In other words, source and
destination are required to communicate, at time slot t, their
future positions at time slot t+ 1, to the relays. Additionally,
as also assumed for the relays as well (see Section IV.A), in
case source and destination are mobile, they are both assumed
not to communicate and move simultaneously. �

III. SPATIOTEMPORAL WIRELESS CHANNEL MODELING

This section introduces and discusses a stochastic model for
describing a spatiotemporally varying wireless channel.

A. Gaussian Field Channel Modeling in the dB Domain

At each space-time point (p, t) ∈ S × N+
NT

, the source-relay
channel field may be decomposed as the product of three
space-time varying components [29], as

f (p, t) ≡ fPL(p)︸ ︷︷ ︸
path loss

fSH(p, t)︸ ︷︷ ︸
shadowing

fMF (p, t)︸ ︷︷ ︸
fading

eJ
2π‖p−pS‖2

λ , (2)

where λ > 0 denotes the communication wavelength,
fPL (p) , ‖p− pS‖−`/22 is the path loss field, with ` > 0

being the path loss exponent, fSH (p, t) ∈ R is the shadowing
field, and fMF (p, t) ∈ C is the multipath fading field.

The same decomposition holds in direct correspondence for
the relay-destination channel field, g (p, t). It is assumed that
the (vector) fields fMF (p, t) and

[
fMF (p, t) gMF (p, t)

]
are

independent of gMF (p, t) and
[
fSH(p, t) gSH(p, t)

]
, respec-

tively. It is further assumed that the phase field of fMF (p, t)

is independent of the magnitude field
∣∣∣fMF (p, t)

∣∣∣. It then

follows that the vector fields
[∣∣∣fMF (p, t)

∣∣∣
∣∣∣gMF (p, t)

∣∣∣
]

and[
fSH(p, t) gSH(p, t)

]
are independent, as well.

We are interested in the magnitudes of both fields f (p, t)
and g (p, t). Instead of working with (2), it is more preferable
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to work in logarithmic scale. We may define the log-scale
magnitude field

F (p, t) , αS (p) `+ σS (p, t) + ξS (p, t) , (3)

where we identify

−αS (p) , 10 log10 (‖p− pS‖2) , (4)

σS (p, t) , 10 log10

(
fSH (p, t)

)2

and (5)

ξS (p, t) , 10 log10

∣∣∣fMF (p, t)
∣∣∣
2

− ρ, with (6)

ρ , E
{

10 log10

∣∣∣fMF (p, t)
∣∣∣
2
}
, (7)

for all (p, t) ∈ S×N+
NT

. It is trivial to show that the magnitude
of f (p, t) may be reconstructed via the bijective formula

|f (p, t)| ≡ 10ρ/20 exp ((log (10) /20)F (p, t)) , (8)

for all (p, t) ∈ S×N+
NT

. Regarding g (p, t), the log-scale field
G (p, t) is defined in the same fashion, replacing “S” by “D”.

For each relay i ∈ N+
R, let us define the respective log-

scale channel magnitude processes Fi (t) , F (pi (t) , t) and
Gi (t) , G (pi (t) , t), t ∈ N+

NT
. Of course, we may stack all

the Fi (t)’s, resulting in the vector additive model

F (t) , αS (p (t)) `+ σS (t) + ξS (t) ∈ RR×1, (9)

where αS (t), σS (t) and ξS (t) are defined accordingly. We
can also define G (t) , αD (p (t)) ` + σD (t) + ξD (t) ∈
RR×1, with each quantity in direct correspondence with (9).
In the same manner, the log-scale shadowing and multipath
fading processes are defined as σiS(D) (t) , σS(D) (pi (t) , t)

and ξiS(D) (t) , ξS(D) (pi (t) , t), t ∈ N+
NT

, respectively.
Next, let us focus on the joint spatiotemporal dynamics of

{|fi (t)|}i and {|gi (t)|}i, modeled through those of the shad-
owing components of {Fi (t)}i and {Gi (t)}i. It is assumed
that, for any NT and any deterministic ensemble of positions
of the relays in N+

NT
, say {p (t)}

t∈N+
NT

, the random vector
[
F T (1) GT (1) . . . F T (NT ) GT (NT )

]T
∈R2RNT×1 (10)

is jointly Gaussian with known mean and covariance matrix
[23], [30]. More specifically, on a per node basis, we let
ξiS(D) (t)

i.i.d.∼ N
(

0, σ2
ξ

)
and σiS(D) (t)

i.d.∼ N
(

0, η2
)

, for all

t ∈ N+
NT

and i ∈ N+
R [23], [31]. In particular, extending Gud-

mundson’s model [32], we propose defining the spatiotemporal
correlations of the shadowing part of the channel as

E
{
σiS (k)σjS (l)

}
, η2e−

‖pi(k)−pj(l)‖2
β − |k−l|γ , (11)

and correspondingly for
{
σiD (t)

}
i∈N+

R

, and additionally,

E
{
σiS (k)σjD (l)

}
, E

{
σiS (k)σjS (l)

}
e−
‖pS−pD‖2

δ , (12)

for all (i, j) ∈ N+
R × N+

R and for all (k, l) ∈ N+
NT
× N+

NT
. In

the above, η2 > 0 and β > 0 are called the shadowing power
and the correlation distance, respectively [32]. In this fashion,
we will call γ > 0 and δ > 0 the correlation time and the BS

pS

W ⊂ R2

pD

pi (t)

f (pi (t)
, t)

g
(
pj

(t) ,
t
)

Ph
ysi

cal
Ob

sta
cle

pj (t)

Figure 2: A case where source-relay and relay-destination links
are likely to be correlated.

(Base Station) correlation, respectively. For later reference, let
us define the (cross)covariance matrices in SR

ΣSD (k, l),E
{
σS (k)σT

D (l)
}

+1{S≡D}1{k≡l}σ
2
ξIR, (13)

as well as

Σ (k, l) ,

[
ΣSS (k, l) ΣSD (k, l)
ΣSD (k, l) ΣDD (k, l)

]
∈ S2R, (14)

for all (k, l) ∈ N+
NT
× N+

NT
. Then, the covariance matrix of

the joint distribution describing (10) can be expressed as

Σ ,




Σ (1, 1) . . . Σ (1, NT )
...

. . .
...

Σ (NT , 1) · · · Σ (NT , NT )


 ∈ S2RNT . (15)

Of course, in order for Σ to be a valid covariance matrix,
it must be at least positive semidefinite. If fact, for nearly
all cases of interest, Σ is guaranteed to be strictly positive
definite, as the following basic result suggests.

Lemma 2. (Positive (Semi)Definiteness of Σ) For all pos-
sible deterministic trajectories of the relays on SR × N+

NT
,

it is true that Σ ∈ S2RNT
++ , as long as σ2

ξ 6= 0. Otherwise,
Σ ∈ S2RNT

+ . In other words, as long as multipath (small-scale)
fading is present in the channel response, the joint Gaussian
distribution of (10) is guaranteed to be nonsingular.

Proof of Lemma 2: See Appendix.

B. Model Justification & Extensions

As already mentioned, spatial dependence among the
source-relay and relay-destination channel magnitudes (due
to shadowing) is described via Gudmundson’s model [32]
(position related component in (11)), which has been very
popular in the literature and also experimentally verified [23],
[32], [33]. Second, the Laplacian type of temporal dependence
among the same groups of channel magnitudes also constitutes
a reasonable choice, in the sense that channel magnitudes
are expected to be significantly correlated only for small
time lags, whereas, for larger time lags, such dependence
should decay at a fast rate. Of course, one could use any
other positive (semi)definite kernel, without changing the
statement and proof of Lemma 2. Third, the incorporation of
the spherical/isotropic BS correlation term in our proposed
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general model (in (12)) can be justified by the existence of
important cases where the source and destination might be
close to each other and yet no direct link may exist between
them. See, for instance, Fig. 2, where a “large” physical
obstacle makes direct communication between the source and
the destination impossible. Then, relay beamforming can be
exploited in order to improve or maintain communication
between the source and the destination, making intelligent
use of available resources. In such cases, however, it is very
likely that the shadowing parts of the source-relay and relay-
destination links will be spatially and/or temporally correlated
among each other, since shadowing is very much affected by
the spatial characteristics of the terrain, which, in such cases,
is common for both beamforming phases. Of course, by taking
δ → 0, one recovers the generic/trivial case where the source-
relay and relay-destination links are mutually independent.

IV. PROBLEM FORMULATION

In this section, we formulate the spatially controlled relay
beamforming problem, advocated in this paper.

A. Joint Scheduling of Communications & Controls

At each time slot t ∈ N+
NT

and assuming the same carrier
for all communication tasks, we employ a basic joint commu-
nication/decision making TDMA-like protocol, as follows:

1) The source broadcasts a pilot signal to the relays, which
then estimate their channels relative to the source.

2) The same procedure is carried out for the channels
relative to the destination.

3) Then, based on the estimated CSI, the relays beamform
in AF mode (assume perfect CSI estimation).

4) Based on CSI received so far, strategic decision making
is implemented, relay motion controllers are determined
and relays are steered to their updated positions.

These actions are repeated for all NT time slots. In order to
simplify the presentation, we will additionally assume that,
following Action 2, the relays can forward all estimated CSI
to the destination, via a dedicated low rate channel. This
simplifies information decoding since, in principle, channel
effects can be mitigated at the destination. In such case, the
effect of SINR maximization on the achievable Bit-Error-Rate
(BER) follows well-known results, see, e.g., [34], [35].

Concerning relay kinematics, it is assumed that the relays
obey the differential equation

ṗ (τ) ≡ u (τ) , ∀τ ∈ [0, T ] , (16)

where u , [u1 . . . uR]
T ∈ SR, with ui : [0, T ] → S

being the motion controller of relay i ∈ N+
R. Apparently, relay

motion is in continuous time. However, assuming the relays
may move only after their controls have been determined and
up to the start of the next time slot, we can write

p (t) ≡ p (t− 1) +

ˆ
∆τt−1

ut−1 (τ) dτ, ∀t ∈ N2
NT
, (17)

with p (1) ≡ pinit, and where ∆τt ⊂ R and ut : ∆τt →
SR denote the time interval that the relays are allowed to
move in, and the respective relay controller, in each time slot

t ∈ N+
NT−1. It holds that u (τ) ≡∑

t∈N+
NT−1

ut (τ)1∆τt
(τ),

where τ belongs in the first NT − 1 time slots. Of course, at
each time slot t, the length of ∆τt, |∆τt|, must be sufficiently
small such that the temporal correlations of the CSI at adjacent
time slots are sufficiently strong. These are controlled by the
correlation time γ, which can be a function of the slot width.
Therefore, relay velocity must be of the order of (|∆τt|)−1. In
this work, though, for simplicity, we assume that the relays are
not explicitly resource constrained, in terms of their motion.

Now, regarding the form of the relay motion controllers
ut−1 (τ) , τ ∈ ∆τt−1, given a goal position vector at time slot
t, po (t) , it suffices to fix a path in SR, such that the points
po (t) and p (t− 1) are connected in at most time |∆τt−1|. A
generic choice for such a path is the straight line connecting
poi (t) and pi (t− 1), for all i ∈ N+

R. Thus, we may choose
the relay controllers at time slot t− 1 ∈ N+

NT−1 as

uot−1(τ) ,
1

|∆τt−1|
(po (t)− p (t− 1)) , ∀τ ∈ ∆τt−1. (18)

As a result, any motion control problem considered hereafter
can be formulated in terms of specifying the goal relay posi-
tions at the next time slot, given their positions at the current
time slot (and the observed CSI). For simplicity, we assume
that collisions never occur, or that, if they do, there exists some
transparent path planning / collision avoidance mechanism
implemented at each relay, out of our direct control. Note
that the pure path planning problem of physically moving the
relays at each time slot is out of the scope of this paper.

Hereafter, let C (Tt) denote the set of channel gains ob-
served by the relays, along the paths of their point trajectories
Tt , {p (1) . . . p (t)}, t ∈ N+

NT
. Then, Tt may be recursively

updated as Tt ≡ Tt−1 ∪ {p (t)}, for all t ∈ N+
NT

, with
T0 , ∅. In a technically precise sense, {C (Tt)}t∈N+

NT

will
also denote the filtration generated by the CSI observed at the
relays, along Tt, interchangeably. In other words, in case the
trajectories of the relays are themselves random, then C (Tt)
denotes the σ-algebra generated by both the CSI observed
up to and including time slot t and p (1) . . . p (t), for all
t ∈ N+

NT
. Additionally, we define C (T0) ≡ C ({∅}) as

C (T0) , {∅,Ω}, that is, as the trivial σ-algebra, and we
may refer to time t ≡ 0, as a dummy time slot, by convention.

Remark 3. Note that, in our work, we assume that communi-
cation and motion control do not happen simultaneously. This
means that, in a practical setting, the source, destination and
all relays, while communicating, are either completely still, or
they move sufficiently slowly, such that the local spatial and
temporal changes of the wireless channel are negligible, as are
Doppler shift effects. Consequently, temporal small and large
scale channel variations are only due to changes in the physical
characteristics of the space, which happen at considerably
slower frequency than the rate of actual communication. Ap-
parently, there is a natural interplay between relay velocity and
the relative rate of change of the communication channel. The
challenge is to identify a fair tradeoff between a reasonable re-
lay velocity, and a communication window of appropriate size,
which would enable faithful channel prediction. The width
of the communication window depends significantly on the
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spatial characteristics of the terrain in the specific application,
which also determine the sampling rate employed for channel
model training. Further, the interval occupied by relay motion
within each time slot should be as small as possible. In theory,
for a given relay velocity, the relays could move to any position
up to which the channel remains correlated. However, as the
per time slot rate of communications depends on the relay
velocity (characterizing system throughput), the relays should
move to much smaller distances within the slot. �

B. Spatially Controlled SINR Maximization at the Destination

Next, we propose a 2-stage stochastic programming ap-
proach, optimizing network QoS by optimally selecting beam-
forming weights and relay positions, on a per time slot basis.

Optimization of Beamforming Weights: At time slot t ∈
N+
NT

, given CSI in C (Tt), we formulate the problem [3], [6]

maximize
w(t),[w∗1 (t) ... w

∗
R(t)]

T

E {PS (t)|C (Tt)}
E {PI+N (t)|C (Tt)}

subject to E {PR (t)|C (Tt)} ≤ Pc
, (19)

where PR (t), PS (t) and PI+N (t) denote the random instan-
taneous power at the relays, that of the signal component and
that of the interference plus noise component at the destination
(see (1)), respectively and where Pc > 0 denotes the total
available relay transmission power. Exploiting mutual inde-
pendence regarding CSI related to the source and destination,
respectively, (19) can be reexpressed analytically as [3]

maximize
w(t)

wH (t) R (p (t) , t)w (t)

σ2
D +wH (t) Q (p (t) , t)w (t)

subject to wH (t) D (p (t) , t)w (t) ≤ Pc
, (20)

where, dropping the dependence on (p (t) , t) or t for brevity,

D,P0diag
([
|f1|2 |f2|2 . . . |fR|2

]T)
+ σ2IR∈ SR++, (21)

R,P0hhH∈ SR+, with h,[f1g1 f2g2 . . . fRgR]
T and (22)

Q,σ2diag
([
|g1|2 |g2|2 . . . |gR|2

]T)
∈ SR++. (23)

Note that the program (20) is always feasible, as long as Pc
is nonnegative. It is well known that the optimal value of (20)
can be expressed in closed form as [3]

Vt ≡ V (p (t) , t) (24)

,Pcλmax

((
σ2
DIR+PcD

−1/2QD−1/2
)−1

D−1/2RD−1/2

)
,

for all t ∈ N+
NT

. Exploiting the structure of the matrices
involved, Vt may also be expressed analytically as [6]

Vt ≡
∑

i∈N+
R

PcP0 |f (pi (t) , t)|2 |g (pi (t) , t)|2

P0σ
2
D |f (pi (t) , t)|2+Pcσ

2 |g (pi (t) , t)|2+σ2σ2
D

,
∑

i∈N+
R

VI (pi (t) , t) , ∀t ∈ N+
NT
. (25)

This analytical representation of the optimal value Vt will be
of crucial importance in our subsequent development.

w∗ (t− 1)

@ Time Slot t− 1

Beamforming
Optimization

Relay Controller
Optimization

{fi, gi}: CSI at
(po (t− 1) , t− 1)

po (t) and
uo
t−1 (τ) , τ ∈ ∆τt−1

· ∪ {·}
C(Tt−1)

2nd Stage Problem at t − 1

1st Stage Problem at t

C(Tt−2)

Figure 3: 2-Stage optimization of beamforming weights and
relay motion controls. The variable w∗ (t− 1) denotes the
optimal beamforming weights, selected at time slot t− 1.

Optimization of Beamformer Positions: At time slot t− 1,
we are interested in choosing relay positions at time slot t,
such that Vt is maximized. However, at time slot t − 1, we
are only given C (Tt−1), which does not encode future CSI,
revealed at time slot t. Therefore, exact optimization of the
relay positions at the next time slot is impossible. Nevertheless,
it would be reasonable to search for the best decision on the
positions of the relays at time slot t, such that Vt is maximized
in expectation, relative to C (Tt−1).

But what relative to C (Tt−1) means quantitatively? Since,
at time slot t−1, deterministic optimization of Vt with respect
to p (t) is impossible, it makes sense to consider optimizing a
projection of Vt onto the space of all measurable functions of
C (Tt−1). Since, for every p (t) ∈ SR, Vt is of finite variance,
it is then reasonable to consider orthogonal projections or,
in other words, the Minimum Mean Square Error (MMSE)
predictor of Vt given C (Tt−1). One then optimizes the random
utility E {Vt |C (Tt−1)} relative to the point p (t), resulting in
the 2-stage stochastic program [36]

maximize
p(t)

E



Vt ≡

∑

i∈N+
R

VI (pi (t) , t)

∣∣∣∣∣∣
C (Tt−1)





subject to p (t) ∈ C (po (t−1))

, (26)

solved at time slot t − 1 ∈ N+
NT−1, where po (1) ∈ SR is a

known constant, representing the initial positions of the relays
and C (po (t− 1)) ⊆ SR denotes a finite set representing a
spatially feasible neighborhood around the point po (t− 1) ∈
SR, the (possibly optimal) decision vector selected at time
t − 2 ∈ NNT−2 (recall that t ≡ 0 denotes a dummy time
slot). For instance, C might prevent relays from colliding with
each other, at their goal positions. If, further, C is allowed
itself to depend on t (for simplicity it is not), it could also
prevent collisions of relays with other obstacles in the space
(at the goal positions of the relays). In the relevant literature,
the map C (·) is referred to as a finite-valued multifunction,
and we write C : SR ⇒ SR [36]. Additionally, problems
(26) and (20) are referred to as the first-stage problem and the
second-stage problem, respectively [36]. A block diagram of
the proposed approach is shown in Fig. 3.

As compared with traditional, stationary AF beamforming,
the additional challenge in our spatially controlled system
described above is that, while using the same CSI as in
the stationary case, each relay (MMSE-optimally) predicts



KALOGERIAS & PETROPULU: SPATIALLY CONTROLLED RELAY BEAMFORMING 7

optimal beamforming performance in its vicinity, and moves
to an optimally selected location, presuming the validity of
the proposed spatiotemporal channel model. As explained in
Remark 3, this requires a sufficiently slowly varying channel
as compared to relay motion, and/or motion constrained within
small steps. As a prototypical example, one can think of
drones optimally moving in small steps in order to improve
communication quality (also see Fig. 1).

C. Motion Policies & The Interchangeability Principle

Before proceeding with the development of techniques for
solving (26), we discuss an important variational property of
(26), related to the long-term performance of the proposed
spatially controlled beamforming system. Our discussion is
based on the exploitation of the so-called Interchangeability
Principle (IP) [36]–[40], also known as the Fundamental
Lemma of Stochastic Control (FLSC) [41], [42]. The IP is
not a single mathematical statement, but refers to a fam-
ily of technical results, which provide conditions permitting
interchange of expectation and max/minimization in general
stochastic programs.

A version of the IP, which fits the structural framework
under which the pointwise (over constants) first-stage problem
(26) is formulated in this paper, is rigorously established in
[40] (for details, the reader is referred to the analysis of [40],
but this is out of the scope of this paper). Specifically, the IP
implies that (26) is exchangeable by the variational problem

maximize
p(t)

E {Vt}

subject to p (t)∈ C (po (t−1))

p (t) is C (Tt−1) -measurable

, (27)

to be solved at each t − 1 ∈ N+
NT−1. The crucial difference

between (27) and our original problem (26) is that, in the
former, optimization of the unconditional expectation of Vt is
considered, over all (measurable) mappings of the variables
generating C (Tt−1) to C (po (t−1)). This implies that, in (27),
p (t) is a function of all CSI and motion controls up to and
including time slot t−1, whereas, in (26), p (t) is a point, since
all variables generating C (Tt−1) are fixed before decision
making. Aligned with the literature, any feasible decision p (t)
in (27) will be called an (admissible) policy, or a decision rule.

Exchangeability of (26) and (27) is understood in the sense
that the optimal value of (27), which is a number, coincides
with the expectation of the optimal value of (26), which
is a measurable function of C (Tt−1) (and fixed for every
realization of the variables generating C (Tt−1)). In other
words, maximization is interchangeable with integration, in
the sense that

sup
p(t)∈Dt

E{Vt} ≡ E



 sup

p(t)∈C(p
o
(t−1))

E{Vt |C (Tt−1)}



, (28)

for all t ∈ N2
NT

, where Dt denotes the set of feasible decisions
for (27). What is more, owing to our assumption that the
control space S is finite, the IP guarantees that every optimal
solution to the original stochastic program (26) is feasible and
thus, optimal, for (27).

Remark 4. (Why Policies?) Although problem (26) is intu-
itively justified, dependence of its objective (26) on C (Tt−1)
does not always render it a useful optimality criterion. This
is because the objective of (26) quantifies the performance
of a single decision, only conditioned on C (Tt−1). In other
words, the objective of (26) does not quantify the performance
of a policy. To do that, any reasonable performance criterion
should assign a number to each policy, ranking its quality for
all possible values of the variables generating C (Tt−1). The
expected utility E {Vt} of problem (27) constitutes a suitable
such criterion. And by the IP, (27) may be reduced to (26),
which can thus be regarded as a proxy for solving the former.

In our spatially controlled beamforming problem, the impli-
cations of the IP may be intuitively demonstrated as follows.
By solving our original problem (26), each relay chooses their
optimal motion control, given the information collected so far
by the network. Although this is indeed a reasonable thing
to do at each time slot from an opportunistic perspective, it
does not immediately imply that it is also a good thing to
do for (almost) every possible realization of the information
that could be potentially collected by the network. The IP
confirms this assertion by showing that, in fact, optimizing
instantaneous network QoS by solving (26), also optimizes
network QoS on average, with respect to all admissible relay
motion policies, at each particular time slot (problem (27)).

The main reason justifying our interest in policies is that,
except for instantaneous performance, one should also be
interested in long-term performance of the beamforming sys-
tem. In other words, it should be possible to assess system
performance if the system is used repeatedly over time, e.g.,
periodically (every hour, day) or on demand. For example,
consider a beamforming system, which operates for NT time
slots and independently restarts its operation at time slots
kNT+1, for k in some subset of N+. This might be practically
essential for maintaining system stability over time, saving
on resources, etc. It is then clear that merely quantifying the
performance of individual decisions is incomplete, from an
operational point of view; simply, the random utility approach
(that is, (26)) quantifies performance only along a path of
the observed information, C (Tt−1), for t ∈ N+

NT
. This issue

is more profound when channel observations taking specific
values correspond to events of zero measure (as with the
channel model of Section III). On the contrary, it is of interest
to quantify system performance when decisions are made
for all outcomes of the sample space Ω. This necessitates
assessment of different policies (decision rules), and this is
only possible by considering variational optimization (policy
search) problems, such as (27).

Further, consideration of the variational program (27) is
practically motivated, as well. Simulating repeatedly the sys-
tem and by the Law of Large Numbers, one may obtain
excellent estimates of the expected performance of the system,
quantified by the chosen utility. Therefore, the systematic
experimental assessment of a particular sequence of policies
(one for each time slot) is readily possible (see Section VII).
Apparently, this is impossible to perform by adopting the ran-
dom utility approach, since, in this case, system performance
is quantified via a real valued (in general) random quantity.
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m1:t−1 ,
[
F T (1) GT (1) . . . F T (t− 1) GT (t− 1)

]T
∈ R2R(t−1)×1 (29)

µ1:t−1 , [αS (p (1)) αD (p (1)) . . . αS (p (t− 1)) αD (p (t− 1))]
T
` ∈ R2R(t−1)×1 (30)

c
F (G)
1:t−1 (p) ,

[
c
F (G)
1 (p) . . . c

F (G)
t−1 (p)

]
∈ R1×2R(t−1) (31)

c
F (G)
k (p) ,

[{
E
{
σS(D) (p, t)σjS (k)

}}
j∈N+

R

{
E
{
σS(D) (p, t)σjD (k)

}}
j∈N+

R

]
∈ R1×2R, ∀k ∈ N+

t−1 (32)

Σ1:t−1 ,




Σ (1, 1) · · · Σ (1, t− 1)
...

. . .
...

Σ (t− 1, 1) · · · Σ (t− 1, t− 1)


 ∈ S2R(t−1)

++ (33)

V. NEAR-OPTIMAL BEAMFORMER MOTION CONTROL

Problem (26) enjoys rather favorable structure. In particular,
we readily observe that (26) is separable. In fact, given that,
for each t ∈ N+

NT−1, decisions taken and CSI collected so far
are available to all relays, (26) can be solved in a completely
distributed fashion at the relays, with the i-th relay being
responsible for solving the program

maximize
p

E {VI (p, t)|C (Tt−1)}
subject to p ∈ Ci (po (t−1))

, (34)

at each t − 1 ∈ N+
NT−1, where Ci : R2 ⇒ R2 denotes

the corresponding section of C, for each i ∈ N+
R. Note

that no local exchange of intermediate results is required
among relays; given the available information, each relay
independently solves its own subproblem. It is also evident
that apart from the obvious difference in the feasible set, the
optimization problems at each of the relays are identical.

However, problem (34) presents an important technical
difficulty: Its objective involves the evaluation of a conditional
expectation of a well defined ratio of almost surely positive
random variables, which is impossible to perform analyti-
cally. Hence, it is necessary to resort to well behaved and
computationally efficient surrogates to problem (34). Next,
we present three near-optimal such approaches. The first two
rely on global function approximation techniques, and achieve
excellent empirical performance. The third approach is based
on local approximations of the objective of (34) and, although
strictly suboptimal, it is extremely computationally efficient.

All proposed approximations to the stochastic program (34)
will be based on the following technical, though simple, result.

Lemma 5. (Big Expectations) Under the assumptions of the
wireless channel model introduced in Section III, it is true
that, at any p ∈ S,
[
F (p, t)
G (p, t)

]∣∣∣∣C (Tt−1) ∼ N
(
µF,Gt|t−1(p) ,ΣF,G

t|t−1(p)
)
, (35)

for all t ∈ N2
NT

, and where we define

µF,Gt|t−1(p),
[
µFt|t−1 (p) µGt|t−1 (p)

]T
, (36)

µFt|t−1 (p),αS (p) `

+ cF1:t−1 (p) Σ−1
1:t−1

(
m1:t−1−µ1:t−1

)
∈ R, (37)

µGt|t−1 (p),αD (p) `

+ cG1:t−1 (p) Σ−1
1:t−1

(
m1:t−1−µ1:t−1

)
∈ R and (38)

ΣF,G
t|t−1 (p),


 η2 + σ2

ξ η2e−
‖pS−pD‖2

δ

η2e−
‖pS−pD‖2

δ η2 + σ2
ξ




−
[
cF1:t−1 (p)

cG1:t−1 (p)

]
Σ−1

1:t−1

[
cF1:t−1 (p)

cG1:t−1 (p)

]T
∈ S2

++, (39)

with m1:t−1, µ1:t−1, cF1:t−1 (p), cG1:t−1 (p), cFk (p), cGk (p)
and Σ1:t−1 defined as in (29), (30), (31), (32), and (33)
respectively (top of page), for all (p, t) ∈ S × N2

NT
. Further,

for every choice of (m,n) ∈ Z×Z, the conditional correlation
of the fields |f (p, t)|m and |g (p, t)|n relative to C (Tt−1) may
be expressed in closed form as

E { |f (p, t)|m |g (p, t)|n|C (Tt−1)}

≡10(m+n)ρ/20 exp

(
log (10)

20

[
m
n

]T
µF,Gt|t−1(p)

+

(
log (10)

20

)2[
m
n

]T
ΣF,G
t|t−1(p)

[
m
n

])
, (40)

at any p ∈ S and for all t ∈ N2
NT

.

Proof of Lemma 5: See Appendix.
The detailed description of the proposed techniques for

efficiently approximating our base problem (34) now follows.
Sample Average Approximation (SAA): This is the direct

Monte Carlo approach, where, at worst, existence of a sam-
pling, or pseudosampling mechanism at each relay is assumed,
capable of generating samples from a bivariate Gaussian
measure. We may then observe that the objective of (34) can
be represented, for all t ∈ N2

NT
, via a Lebesgue integral as

E {VI (p, t)|C (Tt−1)}

=

ˆ
R2
r (x)N

(
x;µF,Gt|t−1(p) ,ΣF,G

t|t−1(p)
)

dx, (41)

for any choice of p ∈ S , where N (·;µ,Σ) : R2 → R++

denotes the bivariate Gaussian density, with mean µ ∈ R2×1

and covariance Σ ∈ S2×2
+ , and the function r : R2 → R++ is

defined exploiting the bijective formula (8) as

r(x),
PcP010ρ/10 [exp (x1+x2)]

ς

P0σ
2
D[exp(x1)]

ς
+Pcσ

2[exp(x2)]
ς
+10−

ρ
10σ2σ2

D

, (42)
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for all x ≡ (x1, x2) ∈ R2, where ς , log (10) /10. By a
simple change of variables, it is also true that

E {VI (p, t)|C (Tt−1)}

=

ˆ
R2
r

(√
ΣF,G
t|t−1(p)x+ µF,Gt|t−1(p)

)
N(x; 0, I2) dx, (43)

for all p ∈ S and t ∈ N2
NT

.
Now, for each relay i ∈ N+

R , at each t ∈ N+
NT−1 and for

some S ∈ N+, let
{
xji,t

}
j∈N+

S

be a sequence of independent

random elements in R2, such that xji,t ∼ N (0, I2), for all
j ∈ N+

S . We also assume that all such sequences are mutually
independent of the channel fields F and G. Then, by defining
the sample average estimate

SS (p, t),
1

S

∑

j∈N+
S

r

(√
ΣF,G
t|t−1(p)xij,t−1+µF,Gt|t−1(p)

)
, (44)

the SAA of our initial problem (34) is formulated as

maximize
p

SS (p, t)

subject to p ∈ Ci (po (t− 1))
, (45)

at relay i ∈ N+
R, solved at each t − 1 ∈ N+

NT−1. Although
detailed analysis is out of the scope of this paper, we should
mention that, because the feasible of set of the SAA (45) is not
only compact but, even more, finite, and because its objective
is (obviously) continuous relative to p, the optimal solution of
(45) possesses various strong asymptotic guarantees in terms
of convergence to the optimal solution of the original problem,
as S →∞. For details, the reader is referred to ([36], Chapter
5). On the downside, the SAA approach requires Monte Carlo
sampling, which might be restrictive in certain scenarios.

Note that we have not explicitly assumed mutual indepen-
dence among the sequences

{
xji,t

}
j
, for each i and each t.

This means that one could generate one sequence for all relays,
per time slot, or even further, one sequence for all relays, for
all times slots altogether. Such sampling schemes are totally
valid, since, on the one hand, all SAAs of the form (45) are
solved independently at each relay, at each time slot while,
on the other hand, Monte Carlo sampling is assumed to be
independent from the spatiotemporal fields F and G. Such
sampling schemes are very efficient for practical purposes,
as they relax or even eliminate the need for (pseudo)random
sampling at every individual relay. As we will see in the
numerical simulations presented later in Section VII, this
approach exhibits excellent empirical performance.

Gauss-Hermite Quadrature (GHQ): Similarly to the con-
cept of the SAA, the GHQ constitutes a global approximation
technique, with the distinctive difference that the latter is
purely deterministic; by construction, no sampling is required.
However, there is a price paid in terms of generality, since
GHQ is specially designed for the approximate computation
of multidimensional Gaussian integrals, involving a function
of choice, times a term of the form exp(−x2). Similarly to
the SAA, it can be shown that the objective of (34) may be

closely approximated by the double summation formula (see
Section IV in [26])

QQ (p, t)

,
∑

i∈N+
Q

$i

∑

j∈N+
Q

$jr

(√
ΣF,G
t|t−1(p)qi,j+µ

F,G
t|t−1(p)

)
, (46)

where Q ∈ N+ is called the quadrature resolution, each
plane vector qi,j ,

[
qi qj

]T ∈ R2×1 denotes the (i, j)-th
quadrature point and the tuple

(
$i, $j

)
∈ R2×1 contains the

respective weighting coefficients, for all (i, j) ∈ N+
Q × N+

Q.
As already seen by their definitions, both sets of quadrature
points and weighting coefficients are selected independently in
each dimension. Quadrature points and weighting coefficients
are deterministic and determined apriori, via the following
procedure [26], [43]. Consider a matrix J ∈ RQ×Q, such that

J(i, j),
√

min {i, j} /21{|j−i|≡1}, (47)

for all (i, j) ∈ N+
Q × N+

Q. That is, J constitutes a hollow,
tridiagonal, symmetric matrix. Let λi (J) ∈ R and vi (J) ∈
RM×1 denote the i-th eigenvalue and respective normalized
eigenvector of J , for all i ∈ N+

Q. Then, simply, quadrature
points and weighting coefficients are selected as

qi ≡
√

2λi (J) and $i ≡ (vi (J) (1))
2
, ∀i ∈ N+

Q. (48)

In (48), vi (J) (1) denotes the first entry of vi (J), i ∈ N+
Q.

Under the above considerations, the GHQ approximation of
the original pointwise problem (34) is formulated as

maximize
p

QQ (p, t)

subject to p ∈ Ci (po (t− 1))
, (49)

solved at relay i ∈ N+
R, at each time t− 1 ∈ N+

NT−1. Because
quadrature points and weighting coefficients are carefully
selected specifically for evaluating integrals of the form of
(43), the GHQ approach yields extremely accurate approxi-
mations for rather small values of the quadrature resolution
Q, thus successfully compensating for the presence of a double
summation on the RHS of (46). This feature of the GHQ
approach is clearly demonstrated in the numerical results of
Section VII, which also explicitly verify that the empirical
performance of the GHQ and the SAA is essentially identical.

Method of Statistical Differentials (MSD): Lastly, we
present a less precise, however very computationally efficient
technique for approximating E {VI (p, t)|C (Tt−1)}. Now we
exploit (40). To begin with, observe that VI can expressed as

VI (p, t) ≡ 1

VII (p, t)
(50)

,
1

σ2
D

Pc
|g(p,t)|−2

+
σ2

P0

|f(p,t)|−2
+
σ2σ2

D

PcP0

|f(p,t)|−2|g(p,t)|−2

for all (p, t) ∈ S×N+
NT

. Motivated by the rational expression
(50), our approach will be based on the so-called Method of
Statistical Differentials (MSD) ([27], Section 3.14.2).
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Specifically, for t ∈ N2
NT

, the MSD locally approximates
the conditional expectation E {VI (p, t)|C (Tt−1)} around the
function E {VII (p, t)|C (Tt−1)} via the order-1 surrogate

TE1 (p, t) ,
1

E {VII (p, t)|C (Tt−1)} , (51)

or via the order-2 surrogate

TE2 (p, t) ,
E
{

(VII (p, t))
2
∣∣∣C (Tt−1)

}

(E {VII (p, t)|C (Tt−1)})3 , (52)

for all p ∈ S. Both approximations are derived by Taylor
expanding the rational function VI (p, t) ≡ κ (VII (p, t)) ,
1/VII (p, t) around the estimator E {VII (p, t)|C (Tt−1)},
and then taking conditional expectations on the resulting
expressions, relative to C (Tt−1). See also our quantitative
justification of (51) and (52) below. Then, the proposed order-
1 and order-2 MSD approximations of problem (34) are

maximize
p

TE1 (p, t)

subject to p ∈ Ci (po (t− 1))
(53)

and
maximize

p
TE2 (p, t)

subject to p ∈ Ci (po (t− 1))
, (54)

at relay i ∈ N+
R, solved at each t− 1 ∈ N+

NT−1.
It is straightforward to show that the square on the numer-

ator of (52) can be expanded into a sum of terms of the form
C (m,n) × |f (p, t)|m |g (p, t)|n, for (m,n) ∈ Z × Z and
some constant C (m,n). Consequently, owing to Lemma 5,
the approximate formula (52) (and thus also (51)) may be
efficiently computed in closed form at any point p ∈ S.

Justification of the MSD: In our context, the MSD ap-
proach may be quantitatively justified as follows. By Taylor’s
Theorem, it is true that VI (p, t) may be expressed around
any C (Tt−1)-measurable random variable Z : Ω → R++ (a
function of the information collected so far) in terms of a
Taylor polynomial and the respective Taylor remainder as

VI (p, t) ≡ Tj (p, t;Z) + Rj (p, t;Z) , (55)

for j ∈ {1, 2}, where

Tj (p, t;Z) ,
1

Z
− 1

Z2 (VII (p, t)− Z)

+
1

Z3 (VII (p, t)− Z)
2
1{j≡2} (56)

and

Rj (p, t;Z) , VI (p, t)− Tj (p, t;Z)

= (−1)
j+1(

ζj
)−(j+2)

(VII (p, t)− Z)
j+1

, (57)

for all (p, t) ∈ S × N2
NT

, for some function ζj : Ω → R++,
such that ζj ∈ (Z, VII (p, t)), whenever Z ≤ VI (p, t), and
ζj ∈ (VI (p, t) , Z), otherwise. In (56), the choice of Z is
crucial, so that the resulting approximations are as accurate
as possible. Therefore, we will be interested in selecting the
reference point Z in (56) in an operationally meaningful
fashion.

Hereafter, fix (p, t) ∈ S ×N2
NT

, and let j ≡ 1. In this case,
the remainder of the Taylor expansion takes the form

R1 (p, t;Z)

≡ 1

VII (p, t)
− 1

Z
− ∂

∂x

(
1

x

)∣∣∣∣
x≡Z

(VII (p, t)− Z) . (58)

It is most reasonable to select Z, so that R1 is minimized, in an
appropriate sense. We observe that R1 is nothing but the Breg-
man divergence of the strictly convex function κ (·) ≡ 1/ (·)
on (0,∞) [44], evaluated at the pair (VII (p, t) , Z). Denote
this divergence as dκ : R2

++ → R. We have dκ (x, y) ≥ 0, for
every qualifying pair (x, y). In particular, R1 (p, t;Z) ≥ 0, for
every feasible choice of Z. Set E {· |C (Tt−1)} ≡ Et−1 {·},
for brevity. Then, for every Z in the space of strictly positive,
C (Tt−1)-measurable random variables, it follows that

Et−1 {R1 (p, t;Z)} − Et−1 {R1 (p, t;Et−1 {VII (p, t)})}

=
1

Et−1 {VII (p, t)} −
1

Z
+

1

Z2 (Et−1 {VII (p, t)} − Z)

= dκ (Et−1 {VII (p, t)} , Z) ≥ 0, (59)

with equality attained uniquely at Z∗ ≡ Et−1 {VII (p, t)}. In
other words, Z∗ solves the pointwise optimization problem

minimize
z>0

Et−1 {R1 (p, t; z)}. (60)

Interestingly, by the IP [40], discussed for another purpose
earlier in Section IV-C, it is also true that Z∗ solves the policy
search, variational problem

minimize
z

E {R1 (p, t;Z)}
subject to Z ∈ R++

Z is C (Tt−1) -measurable
. (61)

Substituting for Z∗ for Z in (56), the resulting optimal (in the
sense of both (60) and (61)) order-1 Taylor expansion is

T1 (p, t;Et−1 {VII (p, t)})

≡ 2

Et−1 {VII (p, t)} −
VII (p, t)

(Et−1 {VII (p, t)})2 , (62)

and by taking conditional expectations on both sides, we
finally obtain

Et−1 {T1 (p, t;Et−1 {VII (p, t)})} ≡ TE1 (p, t) , (63)

for every choice of (p, t) ∈ S × N2
NT

.
Turning to the deviation of optimal value of the surrogate

(51) from that of (34), it is of course true that
∣∣∣∣sup

p
Et−1 {VI (p, t)} − sup

p
TE1 (p, t)

∣∣∣∣

≤ sup
p

∣∣∣Et−1 {VI (p, t)} − TE1 (p, t)
∣∣∣

≡ sup
p

inf
z>0

Et−1 {R1 (p, t; z)}

≡ sup
p

Et−1

{
1

VII (p, t)

}
− 1

Et−1 {VII (p, t)} . (64)

This means that, for each t ∈ N2
NT

, the optimal values of (51)
and (34) differ at most by the optimal Taylor reminder, max-
imized over the set of feasible relay positions Ci (po (t− 1)),
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for i ∈ N+
R. Observe that our approach does not necessarily

yield minimization of the worst deviation between optimal
values of (51) and (34); this seems to be a much harder
problem to solve, and is not considered in this paper.

The case of the proposed order-2 Taylor surrogate (52)
is obtained by setting j ≡ 2 in (56), and choosing Z ≡
Et−1 {VII (p, t)}, as well. The justification of (52) is heuristic.
As already shown in, for instance, (64), by convexity of the
ratio function κ, Jensen’s Inequality directly implies that the
objective of (53), TE1 (p, t), is always lower than or equal
that of the original program (34). But observe that Jensen’s
Inequality and convexity of the square also implies that

TE2 (p, t) ≡
E
{

(VII (p, t))
2
∣∣∣C (Tt−1)

}

(E {VII (p, t)|C (Tt−1)})3

≥ (E {VII (p, t)|C (Tt−1)})2

(E {VII (p, t)|C (Tt−1)})3 ≡ TE1 (p, t) , (67)

where conditioning is, of course, on identical information. This
motivates the consideration of the order-2 Taylor approxima-
tion TE2 (p, t) as a potential refinement of TE1 (p, t). As we
will see in Section (VII), TE2 (p, t) achieves faster convergence
to steady state than that achieved by TE1 (p, t), empirically
justifying program (52) as an effective heuristic approximation
(34). Note, however, that the objective of (53) might still be
desirable in practice, since it is somewhat easier to compute.
Remark 6. The reader will notice that we have not considered
Taylor expansions of orders greater than two. This is due to
the fact that, as (57) demonstrates (this formula holds for
j > 2, as well), there is no indication that a higher order
expansion would diminish the approximation error. On the
contrary, we observe the presence of higher order exponents
on both numerator and denominator of the remainder formula.
Due to such form of the remainder, higher order expansions
are potentially highly unstable; this is a common issue of
locally convergent Taylor approximations. In regard to the
problem considered herein, this unstable behavior has indeed
been observed via simulations during the development of this
paper. Therefore, the discussion of Taylor expansions of orders
greater than two has been deliberately omitted. �

VI. SHORT DISCUSSION: COMPUTATIONAL COMPLEXITY

At this point, it is important to note that, for each p ∈ S,
computation of the conditional mean and covariance in (35)
of Lemma 5 require execution of matrix operations, which
are of expanding dimension in t ∈ N2

NT
. The reader may

also observe that the inversion of Σ1:t−1 (of size 2R (t− 1))
constitutes the computationally dominant operation in the long
formulas of Lemma 5. The computational complexity of this
matrix inversion, taking place at each time slot t−1 ∈ N+

NT−1,

is, in general, of the order of O
(
R3t3

)
elementary operations.

Fortunately though, we may reduce the complexity of the
aforementioned matrix inversion to the order of O

(
R3t2

)
.

By construction, Σ1:t−1 may be expressed as

Σ1:t−1 ≡
[

Σ1:t−2 Σc
1:t−2

(Σc
1:t−2)

T
Σ (t− 1, t− 1)

]
, (68)

where Σc
1:t−2 ∈ R2R(t−2)×2R is defined as

Σc
1:t−2 , [Σ (1, t− 1) . . . Σ (t− 2, t− 1)]

T
. (69)

Invoking the Matrix Inversion Lemma, we obtain the recursive
expression as defined in (65) and (66) (bottom of page), where
St−1 is the respective Schur complement. From (65) and (66),
it can be easily verified that the most computationally demand-
ing operation involved is Σ−1

1:t−2Σ
c
1:t−2, of order O

(
R3t2

)
.

Since the inversion of St−1 is of the order of O
(
R3
)

, we

arrive at a total reduced complexity of O
(
R3t2

)
elementary

operations of the recursive scheme presented above.
The achieved reduction in complexity is important. In most

scenarios, R, the number of relays, will be relatively small
and fixed for the whole operation of the system, whereas t,
the time slot index, might generally take large values, since
it is common for the operational horizon of the system, NT ,
to be large. Additionally, the reader may readily observe that
the aforementioned covariance matrix is independent of the
position at which the channel is predicted, p. As a result, its
inversion may be performed just once in each time slot, for
all evaluations of the mean and covariance of the Gaussian
density in (35), for all distinct choices of p. Consequently,
if the total number of such evaluations is P ∈ N+, and
recalling that the complexity for a (square) matrix-vector
multiplication is quadratic in the dimension of the quantities
involved, then, at worst, the total computational complexity
for channel prediction is of the order of O

(
PR2t2 +R3t2

)
,

at each t − 1 ∈ N+
NT−1, with worst case complexity of an

order of O
(
PR2N2

T +R3N2
T

)
.

Since, for each relay i ∈ N+
R, the feasible set Ci is assumed

to be finite, the analysis above characterizes the complexity
for solving either of all four optimization surrogates presented
in Section V. For any set A, let |A| denote its cardinality.
Assuming that computation of the square root of a positive
semidefinite two-by-two matrix is a fixed-complexity opera-
tion, then, for every pair (i, t) ∈ N+

R ×N2
NT

, the complexities
for each of the four surrogates are:
• SAA: O

(
|Ci|S + |Ci|R2t2 +R3t2

)
.

• GHQ: O
(
|Ci|Q2 + |Ci|R2t2 +R3t2

)
.

• MSD (order-1 and order-2): O
(
|Ci|R2t2 +R3t2

)
.

Although in the case of the GHQ the dependence on the
number of quadrature points, Q, is quadratic, compared to

Σ−1
1:t−1 =


Σ−1

1:t−2 + Σ−1
1:t−2Σ

c
1:t−2S

−1
t−1 (Σc

1:t−2)
T

Σ−1
1:t−2 −Σ−1

1:t−2Σ
c
1:t−2S

−1
t−1

−S−1
t−1 (Σc

1:t−2)
T

Σ−1
1:t−2 S−1

t−1


 (65)

St−1 , Σ (t− 1, t− 1)− (Σc
1:t−2)

T
Σ−1

1:t−2Σ
c
1:t−2 ∈ S2R

++ (66)
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Figure 4: Comparison of proposed relay motion policies. In the
figure, “A” stands for “Agnostic” and “O” stands for “Oracle”.

a linear dependence on the sample size S for the case of the
SAA, in practice it always the case that Q � S. See also
our numerical results in Section VII below. This renders the
complexity of the SAA and the GHQ totally comparable. In
fact, sometimes the GHQ is more numerically efficient than
SAA, for achieving the same approximation accuracy.

In terms of practical feasibility, and especially for systems
with a long operational horizon (NT ), implementation issues
due to potentially high complexity can be mitigated in various
ways. Examples include the exploitation of a strong network
node, or fusion center (for centralized systems), or some
dedicated, distributed cloud computing service. Additionally,
in order to deal with matrix operations of expanding di-
mensions, sliding-window channel prediction may be imple-
mented, where, at each time slot, each relay conditions on past
channel observations only up to a certain fixed lag. Such an
approach is expected to work very well and for a relatively
small window size, due to the exponentially decaying structure
of the temporal correlation component of the channel model.

VII. NUMERICAL SIMULATIONS

In this section, we present synthetic numerical simulations,
which confirm that the proposed 2-stage approach works,
and yields substantially improved beamforming performance.
All experiments were conducted on an imaginary square
terrain of dimensions 30 × 30 squared units of length, with
W ≡ [0, 30]

2, uniformly divided into 30 × 30 ≡ 900 square
regions. The source and destination are fixed at pS ≡ [15 0]

T

and pD ≡ [15 30]
T . The beamforming horizon is chosen

as T ≡ 60 and the number of relays is fixed at R ≡ 8.
The wavelength is chosen as λ ≡ 0.125, matching a carrier
frequency of 2.4GHz. The various channel parameters are set
as ` ≡ 3, ρ ≡ 20, σ2

ξ ≡ 20, η2 ≡ 50, β ≡ 10, γ ≡ 5 and
δ ≡ 1. The variances of noises at the relays and destination are
fixed as σ2 ≡ σ2

D ≡ 1. Lastly, both the transmission power of
the source and the total power budget of the relays are chosen
as P0 ≡ Pc ≡ 25 (≈ 14dB) units of power.

The relays are restricted to the rectangular region S ≡
[0, 30]× [12, 18]. At each time instant, each relay is allowed to
move inside a 9-region area, centered at its current position,
thus defining its feasible set Ci (·), i ∈ N+

R. Basic collision and
out-of-bounds control was also considered and implemented.

In order to assess the effectiveness of our proposed ap-
proach, we compare all four proposed surrogates to the base
problem (34), proposed in Section V, against the case of an ag-
nostic, purely randomized relay control policy; in this case, at
each time slot, each relay moves randomly to a new available
position, without exploiting observed CSI. For reference, we
also consider the performance of an oracle control policy at the
relays, where, at each time slot t− 1 ∈ N+

NT−1, relay i ∈ N+
R

updates its position by noncausally looking into the future
and choosing the position pi (t), which maximizes directly
the quantity VI (pi (t) , t), over Ci (pi (t− 1)). In other words,
the oracle control policy is implemented by assuming access
to the CSI at every possible position of each relay at time slot
t, while being at time slot t− 1. Of course, the oracle control
policy is not implementable in reality, but only in simulation,
and corresponds to an unachievable performance upper bound,
useful only for the purpose of evaluating the quality of a
particular implementable policy, that is, for benchmarking. Of
course, comparison of all controlled systems is made under
exactly the same communication environment.

Fig. 4 shows the expectation and standard deviation of the
achieved QoS for all controlled systems, approximated by
executing 10000 trials of the whole experiment. The sample
size and quadrature resolution of the SAA and GHQ surrogates
are set to S ≡ 1000 and Q = 8, respectively. Also, in
the case of the SAA, only one sample has been generated
for all relays, and for all times slots. As seen in the figure,
there is a clear advantage in exploiting strategically designed
relay motion control. Whereas the agnostic system maintains
an average SINR of about 4 dB at all times, the SAA and
GHQ surrogates are clearly superior, exhibiting an increasing
trend in the achieved SINR, with a gap starting from about
0.5 dB at time slot t ≡ 2, up to 3.5 dB at time slots
t ≡ 12, 13, . . . , 60. More specifically, assuming that the GHQ
surrogate has reached a (quasi) steady state when t ∈ [12, 60],
the average performance gap in steady state is 3.4116 dB,
which translates into an average improvement of about 80%
on the average network SINR at steady state, compared to the
agnostic policy. As seen in Fig. 4, the performance of the SAA
surrogate is almost identical to that of GHQ surrogate; thus it
is not further discussed.

The order-2 MSD surrogate (problem (54)) comes second
to SAA and GHQ, with always lower average SINR of a
relative gap of approximately 1 dB, and which also exhibits a
similar increasing trend. The order-1 MSD surrogate comes
last and, albeit at a slow rate, it seems to converge to
(and possibly even surpass) the QoS achieved by the order-2
MSD surrogate. Still, the fact that the order-2 MSD surrogate
converges faster to steady state than the order-1 MSD one
confirms our expectation that the former is a somewhat refined
version of the latter. Given that both MSD heuristics are super
computationally efficient, their performance indicates that they
are excellent cheap alternatives to SAA and GHQ.
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Figure 5: Performance of the proposed spatially controlled system, at the presence of motion failures.

Consequently, it is experimentally verified that, although
the proposed stochastic programming approach is myopic, the
resulting system performance is not, and this depends on the
fact that the channel exhibits non trivial temporal statistical
interactions. We should also comment on the standard devia-
tion of all systems, which, from Fig. 4, seems somewhat high,
relative to the range of the respective average SINR. This is
exclusively due to the wild variations of the channel, which, in
turn, are due to the effects of shadowing and multipath fading.
This is reasonable, since, when the channel is not actually in
deep fade at time t (an event which might happen with positive
probability), the relays, at time t− 1, are predictively steered
to locations, which, on average, incur higher network QoS.
As clearly shown in Fig. 4, for all systems under study, an
increase in system performance also implies a proportional
increase in the respective standard deviation.

Next, we experimentally evaluate system performance at the
presence of random motion failures in the network. Hereafter,
we work with the 2nd order heuristic (54) (an average-quality

solution), and set T ≡ 20. Random motion failures are
modeled by choosing, at each trial, a random sample of a
fixed number of relays and a random time when the failures
occur. At that time, the selected relays just stop moving, but
they continue to beamform, from the position each of them
visited last. Two cases are considered; first, motion failures
happen if and only if t ∈ [12, 15] (Figs. 5a and 5c), whereas,
in the second case, t ∈ [5, 6] (Figs. 5b and 5d). In both cases,
zero, one, three and five relays (chosen at random, at each
trial) stop moving. Two cases for γ are considered, γ ≡ 5
(Figs. 5a and 5b) and γ ≡ 15 (Figs. 5c and 5d).

Fig. 5a clearly demonstrates that a larger number of mo-
tion failures induces a proportional, relatively (depending on
γ) slight decrease in performance; this decrease, though, is
smoothly evolving, and is not abrupt. This behavior is more
pronounced in Fig. 5c, where the correlation time parameter
γ has been increased to 15. We readily observe that, in this
case, over the same horizon, the operation of the system is
smoother, and decrease in performance, as well as its slope,
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are significantly smaller than those in Fig. 5a, for all cases of
motion failures. Now, in Figs. 5b and 5d, when motion failures
happen early, well before the network QoS converges to its
maximal value, we observe that, although some relays might
stop moving at some point, the achieved expected network
QoS continues exhibiting its usual increasing trend. Of course,
the performance of the system converges to values strictly
proportional to the number of failures in each of the cases
considered. This means that the relays which continue moving
contribute positively to increasing network QoS.

VIII. CONCLUSIONS

We have considered the problem of enhancing QoS
in time slotted relay beamforming networks with one
source/destination, via stochastic relay motion control. Mod-
eling the wireless channel as a spatiotemporal stochastic field,
we proposed a novel 2-stage stochastic programming approach
for jointly specifying beamforming weights and relay posi-
tions, such that the expected network QoS is maximized, based
on causal CSI and under a total relay power constraint. We
have shown that this problem can be effectively approximated
by a set of simple, two dimensional and theoretically justified
surrogate subproblems, which can be distributively solved, one
at each relay. The proposed surrogates, each which rely on
the SAA, the GHQ, and the MSD, respectively, present a
nice trade-off between performance and numerical efficiency.
Our simulations have revealed several important properties and
confirmed the success of the proposed approach, which results
in motion policies yielding substantial performance gains, re-
portedly an improvement of about 80% on the average network
QoS at steady state, as compared to agnostic, randomized relay
motion.

APPENDIX: PROOFS

Proof of Lemma 2

In the following, we construct Σ incrementally. Initially,
consider the matrix Σ̃ ∈ SRNT defined as

Σ̃ ,




Σ̃ (1, 1) . . . Σ̃ (1, NT )
...

. . .
...

Σ̃ (NT , 1) · · · Σ̃ (NT , NT )


 , (70)

where, for each (k, l) ∈ N+
NT
× N+

NT
, Σ̃ (k, l) ∈ SR, with

Σ̃ (k, l) (i, j) , Σ̃
(
pi(k),pj(l)

)
, η2e−

‖pi(k)−pj(l)‖2
β , (71)

for all (i, j) ∈ N+
R×N+

R. By construction, Σ̃ ∈ SRNT+ , because
the well known exponential kernel Σ̃ : R2 × R2 → R++

defined above is positive (semi)definite.
Next, define the positive definite matrix

K ,

[
1 κ
κ 1

]
, with κ , exp

(
−‖pS − pD‖2

δ

)
< 1 (72)

and consider the Tracy-Singh type of product of K and Σ̃

Σ̃K , K ◦ Σ̃ ∈ S2RNT

,




K 4 Σ̃ (1, 1) . . . K 4 Σ̃ (1, NT )
...

. . .
...

K 4 Σ̃ (NT , 1) · · · K 4 Σ̃ (NT , NT )


, (73)

where “4” denotes the operator of the Kronecker product.
Then, for each (k, l) ∈ N+

NT
× N+

NT
, K 4 Σ̃ (k, l) ∈ S2R. It

is easy to show that Σ̃K ∈ S2R
+ . First, via a simple inductive

argument, it follows that, for compatible matrices A,B,C,D,
(AB) ◦ (CD) ≡ (A ◦C) (B ◦D) . Also, for compatible
A,B, it is true that (A ◦B)

T ≡ AT ◦ BT . Since K
and Σ̃ are symmetric, consider their spectral decompositions
K ≡ UKΛKUT

K and Σ̃ ≡ UΣ̃ΛΣ̃UT
Σ̃

. We may then write

Σ̃K ≡
(
UKΛKUT

K

)
◦
(
UΣ̃ΛΣ̃UT

Σ̃

)

≡
(
UK ◦UΣ̃

) (
ΛK ◦ΛΣ̃

) (
UT

K ◦UT
Σ̃

)

≡
(
UK ◦UΣ̃

) (
ΛK ◦ΛΣ̃

) (
UK ◦UΣ̃

)T
, (74)

where
(
UK ◦UΣ̃

) (
UT

K ◦UT
Σ̃

)
≡
(
UKUT

K

)
◦
(
UΣ̃UT

Σ̃

)
≡

I2 ◦ IRNT ≡ I2RNT
, and where the matrix ΛK ◦ΛΣ̃ is easily

shown to be diagonal and with nonnegative elements. Thus,
since (74) constitutes a valid spectral decomposition for Σ̃K,
it follows that Σ̃K ∈ S2RNT

+ .
As a last step, let E ∈ SNT , such that E (k, l) ,

exp (− |k − l| /γ), for all (k, l) ∈ N+
NT
× N+

NT
. Again, E

is positive semidefinite, because the well known Laplacian
kernel is positive (semi)definite. Consider the matrix Σ̃E ,
(E 4 12R×2R)�Σ̃K ∈ S2RNT , where “�” denotes the opera-
tor of the Schur-Hadamard product. Of course, since the matrix
12R×2R is rank-1 and positive semidefinite, E 4 12R×2R

will be positive semidefinite as well. Consequently, by the
Schur Product Theorem, Σ̃E will also be positive semidefinite.
Finally, observe that Σ ≡ Σ̃E + σ2

ξI2RNT
, implying that

Σ ∈ S2RNT
++ , whenever σ2

ξ 6= 0. Our claims follow. �

Proof of Lemma 5

In the notation of the statement of the lemma, the joint
conditional distribution of [F (p, t) G (p, t)]

T relative to the
σ-algebra C (Tt−1) can be shown to be Gaussian with mean
µF,Gt|t−1(p) and covariance ΣF,G

t|t−1(p), for all (p, t) ∈ S×N2
NT

.
It is then a typical exercise (possibly somewhat tedious though)
to show that the functions µF,Gt|t−1 and ΣF,G

t|t−1 are of the form
asserted in the statement of the lemma. Regarding the proof
for (40), observe that we can write

E { |f (p, t)|m |g (p, t)|n|C (Tt−1)} (75)

≡ 10(m+n)ρ/20

×E
{

exp

(
log (10)

20
[mn] [F (p, t) G (p, t)]

T

)∣∣∣∣C (Tt−1)

}
,

with the quantity on the RHS being nothing else than the
conditional moment generating function of the conditionally
jointly Gaussian random vector [F (p, t) G (p, t)]

T at each p
and t, evaluated at the point (log (10) /20) [mn]

T , for any
choice of (m,n) ∈ Z × Z. Recalling the special form of the
moment generating function for Gaussian random vectors, the
result readily follows. �
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