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Abstract
We develop recursive, data-driven, stochastic subgradient methods for optimizing a new,

versatile, and application-driven class of convex risk measures, termed here as mean-semidevi-
ations, strictly generalizing the well-known and popular mean-upper-semideviation. We intro-
duce the MESSAGEp algorithm, which is an efficient compositional subgradient procedure for
iteratively solving convex mean-semideviation risk-averse problems to optimality, and consti-
tutes a parallel variation of the recently developed, general purpose T -SCGD algorithm of Yang,
Wang & Fang [Yang et al., 2018]. We analyze the asymptotic behavior of the MESSAGEp al-
gorithm under a flexible and structure-exploiting set of problem assumptions, which reveal a
well-defined trade-off between the expansiveness of the random cost and the smoothness of the
mean-semideviation risk measure under consideration. In particular:

• Under appropriate stepsize rules, we establish pathwise convergence of the MESSAGEp

algorithm in a strong technical sense, confirming its asymptotic consistency.

• Assuming a strongly convex cost, we show that, for fixed semideviation order p > 1 and
for ε ∈ [0, 1), the MESSAGEp algorithm achieves a squared-L2 solution suboptimality rate
of the order of O(n−(1−ε)/2) iterations, where, for ε > 0, pathwise convergence is simulta-
neously guaranteed. This result establishes a rate of order arbitrarily close to O(n−1/2),
while ensuring strongly stable pathwise operation. For p ≡ 1, the rate order improves to
O(n−2/3), which also suffices for pathwise convergence, and matches previous results.

• Likewise, in the general case of a convex cost, we show that, for any ε ∈ [0, 1), the
MESSAGEp algorithm with iterate smoothing achieves an L1 objective suboptimality rate
of the order of O(n−(1−ε)/(41{p>1}+4)) iterations. This result provides maximal rates of
O(n−1/4), if p ≡ 1, and O(n−1/8), if p > 1, matching the state of the art, as well.

Finally, we discuss the superiority of the proposed framework for convergence, as compared to
that employed earlier in [Yang et al., 2018], within the risk-averse context under consideration.
By performing careful analysis and by constructing non-trivial counterexamples, we explicitly
demonstrate that the class of mean-semideviation problems supported herein is strictly larger
than the respective class of problems supported in [Yang et al., 2018]. As a result, this work es-
tablishes the applicability of compositional stochastic optimization for a significantly and strictly
wider spectrum of convex mean-semideviation risk-averse problems, as compared to the state of
the art. This fact justifies the purpose of our work from this perspective, as well.
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1 Introduction

During the last almost twenty years, many significant advances have been made in the now relatively
mature area of risk-averse modeling and optimization. These primarily include the fundamental
axiomatization and theoretical characterization of risk functionals, also commonly known as risk
measures [Kijima and Ohnishi, 1993, Rockafellar and Uryasev, 1997, Artzner et al., 1999, Ogryczak
and Ruszczyński, 1999, Ogryczak and Ruszczyński, 2002, Rockafellar and Uryasev, 2002, Rockafellar
et al., 2003, 2006, Ruszczyński and Shapiro, 2006b, Shapiro et al., 2014], as well as extensive analysis
in the context of risk-averse stochastic programs in both static and sequential decision making
problem settings [Rockafellar and Uryasev, 1997, Föllmer and Schied, 2002, Rockafellar et al., 2003,
2006, Ruszczyński and Shapiro, 2006a, Collado et al., 2012, Çavuş and Ruszczyński, 2014a, Asamov
and Ruszczyński, 2015, Dentcheva and Ruszczyński, 2017, Grechuk and Zabarankin, 2017, Shapiro,
2017, Fan and Ruszczyński, 2018]. The importance of building a well structured theory of risk
is motivated by its natural and intuitive relevance to problems from a large variety of applied
domains. Arguably the oldest, archetypical application of risk is in Finance [Kijima and Ohnishi,
1993, Rockafellar and Uryasev, 1997, Andersson et al., 2001, Krokhmal et al., 2001, Chen and Wang,
2008, Shang et al., 2018], which has decisively driven pioneering research in risk-averse modeling and
optimization, from its very birth, probably dating back to the work of Markowitz [Markowitz, 1952],
to present. Other applications of risk may be found in both classical and contemporary domains
such as Energy [Moazeni et al., 2015, Bruno et al., 2016, Jiang and Powell, 2016], Wireless Networks
[Ma et al., 2018], Inventory Optimization [Ahmed et al., 2007, Chen et al., 2007, Xinsheng et al.,
2015] and Supply Chain Management [Gan et al., 2004, Sawik, 2016], to name a few.

Most recently, the development of effective computational methods for applying risk-averse opti-
mization to actual problems has also been attracting considerable attention; see, e.g., [Ruszczyński,
2010, Çavuş and Ruszczyński, 2014b, Moazeni et al., 2017, Tamar et al., 2017, Dentcheva et al.,
2017, Huang and Haskell, 2017, Jiang and Powell, 2017, Yu et al., 2018]. This line of work can be
divided between sequential settings [Çavuş and Ruszczyński, 2014b, Moazeni et al., 2017, Tamar
et al., 2017, Huang and Haskell, 2017, Jiang and Powell, 2017, Yu et al., 2018], and static settings
[Tamar et al., 2017, Dentcheva et al., 2017], for a variety of different problem characteristics. Com-
putational recipes also vary. For instance, [Ruszczyński, 2010] and [Çavuş and Ruszczyński, 2014b]
develop and analyze variations of the well known value and policy iteration algorithms of risk-neutral
dynamic programming; [Moazeni et al., 2017] proposes a method for risk-averse nonstationary direct
parametric policy search for finite horizon problems; [Tamar et al., 2017], [Dentcheva et al., 2017]
and [Yu et al., 2018] rely on the so-called Sample Average Approximation (SAA) approach [Shapiro
et al., 2014], where an appropriately constructed empirical estimate of the original objective is used
as a surrogate to that of the original stochastic program, assuming existence of a sufficiently large
sample of the processes introducing uncertainty into the corresponding risk-averse objective; [Huang
and Haskell, 2017] and [Jiang and Powell, 2017] consider an Approximate Dynamic Programming
(ADP) [Powell, 2011] approach, where sequential finite state/action risk-averse stochastic programs
are tackled via stochastic approximation [Kushner and Yin, 2003].

Following this recent trend, this paper proposes and rigorously analyzes recursive stochastic
subgradient methods for an important class of static, convex risk-averse stochastic programs. In a
nutshell, we make the following contributions:

1) Following the Mean-Risk Model paradigm [Shapiro et al., 2014], we introduce a new class of
convex risk measures, called mean-semideviations. These strictly generalize the well known
mean-upper-semideviation risk measure, and are constructed by replacing the positive part
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weighting function of the latter by another nonlinear map, termed here as a risk regularizer,
obeying certain properties. Mean-semideviations share the same core analytical structure with
the mean-upper-semideviation risk measure; however, they are much more versatile in appli-
cations. We study mean-semideviations in terms of their basic properties, and we present a
fundamental constructive characterization result, demonstrating their generality. Specifically,
we show that the class of all mean-semideviation risk measures is almost in one-to-one corre-
spondence with the class of cumulative distribution functions (cdfs) of all integrable random
variables. This result provides an analytical device for constructing mean-semideviations with
desirable characteristics, starting from any cdf of the aforementioned type. The flexibility
and effectiveness of mean-semideviations are explicitly demonstrated on a classical, chance-
constrained newsvendor model, as well.

2) We introduce the MESSAGEp (MEan-Semideviation Stochastic compositionAl subGradient
dEscent of order p) algorithm, an efficient, data-driven Stochastic Subgradient Descent (SSD)
-type procedure for iteratively solving convex mean-semideviation risk-averse problems to op-
timality. The MESSAGEp algorithm constitutes a parallel variation of general purpose T-level
Stochastic Compositional Gradient Descent (T -SCGD) algorithm, recently developed in [Yang
et al., 2018], under a generic theoretical framework. Although risk-averse optimization is listed
in [Yang et al., 2018] as a potential application of stochastic compositional optimization for the
mere case of mean-upper-semideviations, this work is the first to propose a general algorithm,
applicable to any mean-semideviation model of choice.

3) We analyze the asymptotic behavior of the MESSAGEp algorithm under a new, flexible and
structure-exploiting set of problem assumptions, which reveal a well-defined trade-off between
the expansiveness of the random cost and the smoothness of the mean-semideviation risk
measure under consideration. In particular, under our proposed structural framework:

• Under appropriate stepsize rules, we establish pathwise convergence of the MESSAGEp

algorithm in a strong technical sense, confirming its asymptotic consistency.
• Assuming a strongly convex cost function, the convergence rate of the MESSAGEp al-

gorithm is studied in detail. More specifically, we show that, for fixed semideviation
order p > 1 and for ε ∈ [0, 1), the MESSAGEp algorithm achieves a squared-L2 solution
suboptimality rate of the order of O(n−(1−ε)/2) iterations, where, for ε > 0, pathwise
convergence is simultaneously guaranteed. Thus, this new result establishes a rate of or-
der arbitrarily close to O(n−1/2), also ensuring strongly stable pathwise operation of the
MESSAGEp algorithm. In the simpler case where the semideviation order is chosen as
p ≡ 1, the rate order of the proposed algorithm improves to O(n−2/3), which is sufficient
for pathwise convergence as well, and matches previous results in the related literature
[Wang et al., 2017].
• For the general case of a convex cost, we show that, for any ε ∈ [0, 1), the MESSAGEp

algorithm with iterate smoothing achieves an L1 objective suboptimality rate of the order
of O(n−(1−ε)/(41{p>1}+4)). As in the strongly convex case, for ε > 0, pathwise convergence
is also simultaneously guaranteed. For ε ≡ 0, this result provides maximal rates of
O(n−1/4), if p ≡ 1, and O(n−1/8), if p > 1, matching the state of the art, as well.

4) We discuss the superiority of the proposed framework for convergence, as compared to that
employed earlier in [Yang et al., 2018], within the risk-averse context under consideration.
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By performing careful analysis and by constructing non-trivial counterexamples, we explicitly
demonstrate that the class of mean-semideviation problems supported herein is strictly larger
than the respective class of problems supported in [Yang et al., 2018]. As a result, this paper
establishes the applicability of compositional stochastic optimization for a significantly and
strictly wider spectrum of convex mean-semideviation risk-averse problems, as compared to
the state of the art. This fact justifies the purpose of our work from this perspective, as well.

Our contributions, briefly outlined above, are now discussed in greater detail. We also briefly explain
how our work relates to and is placed within the existing literature.

1.1 Mean-Semideviation Risk Measures

Mean-semideviation risk measures, as proposed and developed in this work, constitute a new class
of risk measures where, given a random cost, the corresponding dispersion measure (the term pe-
nalizing the “mean” part of a mean-risk functional) is defined as the Lp-norm of a nonlinear, one-
dimensional map of the centered cost, or, in other words, its central deviation. This map is called a
risk regularizer, and possesses certain analytical properties: convexity, nonnegativity, monotonicity
and nonexpansiveness. Dispersion measures with this structure are suggestively called generalized
semideviations.

This terminology originates from the presence of the positive part function (·)+ , max {·, 0},
which is the simplest, prototypical example of a risk regularizer, in the corresponding dispersion
measure of the well known mean-upper-semideviation risk measure [Shapiro et al., 2014], i.e., the
upper-(central)-semideviation. Mean-semideviations are much more versatile, however, since differ-
ent choices for the involved risk regularizer correspond to different rules for ranking the relative effect
of both riskier (higher than the mean) and less risky (lower than the mean) events, corresponding
to specific regions in the range of the (centered) cost. As a result, the choice of the risk regularizer
affects the general quality and the roughness/stability of an optimal random cost, in a decision mak-
ing setting. Consequently, owing to their versatility, mean-semideviations are practically appealing
as well, because they are parametrizable and they may incorporate domain specific knowledge more
easily than the rigid mean-upper-semideviation.

In this work, after we formulate simple conditions for the existence of mean-semideviation risk
measures, we study their basic geometric properties, such as convexity and monotonicity. Contrary
to the mean-upper-semideviation alone, mean-semideviations are not coherent risk measures, in
general (as a class), because they do not satisfy positive homogeneity [Shapiro et al., 2014]. This
is due to the potential nonhomogeneity of the risk regularizer involved. They do satisfy convexity,
monotonicity and translation equivariance, though and, therefore, they belong to the class of convex
risk measures, [Föllmer and Schied, 2002, Shapiro et al., 2014], and that of convex-monotone risk
measures, as well.

Further, we present a fundamental constructive characterization result, demonstrating the gen-
erality of mean-semideviations. Specifically, on the one hand, this result shows that the class of
all mean-semideviation risk measures is almost in one-to-one correspondence with the class of cdfs
of all integrable random variables (on the line). On the other, it provides an analytical device for
constructing such risk measures from any cdf of the aforementioned type. Although not studied in
this paper, this correspondence between mean-semideviations and cdfs might be of interest in other
areas related to stochastically robust optimization such as stochastic dominance; see, for instance,
the seminal articles [Ogryczak and Ruszczyński, 1999, Ogryczak and Ruszczyński, 2002] for some
interesting connections.
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Our discussion on mean-semideviation risk measures is concluded by a demonstration of their
practical usefulness and flexibility on a classical, chance-constrained newsvendor model. After we
briefly analyze the structure of the problem under consideration, we put risk regularizers -each
inducing a mean-semideviation risk measure- in context, and we explicitly discuss their construction,
so that the resulting mean-semideviation risk measure best reflects problem characteristics, and the
objectives of the decision maker. Additionally, we present numerical simulations, experimentally
confirming the effectiveness of the proposed risk-averse approach. Our simulations also reveal some
interesting features of the resulting risk-averse solutions, which we further discuss.

Relation to the Literature: We are not the first to propose convex risk measures featuring
nonlinear weighting functions; see, for instance, [Kijima and Ohnishi, 1993, Chen and Yang, 2011,
Fu et al., 2017]. In particular, the recent article [Fu et al., 2017] considers risk measures defined as a
nonlinearly weighted, order-1 (lower) semideviation from a fixed target (see, for instance, Example
6.25 in [Shapiro et al., 2014]), focusing mainly on their applications on a portfolio selection model. In
[Fu et al., 2017], the corresponding weighting function shares the same properties as a risk regularizer
(see above), except for nonexpansiveness. However, our proposed mean-semideviation risk measures
are substantially different and structurally more complex compared to the risk measures proposed
in [Fu et al., 2017]. The main reason is the presence of the expected cost, rather than a fixed target,
in the definition of mean-semideviations; for more details, compare ([Fu et al., 2017], Definition 1)
with Section 3 herein.

1.2 Recursive Optimization of Mean-Semideviations

The main contribution of this work concerns efficient optimization of mean-semideviations, mea-
suring convexly parameterized random cost functions, over a closed and convex set. We introduce
and rigorously analyze the MESSAGEp (MEan-Semideviation Stochastic compositionAl subGradient
dEscent of order p) algorithm (Algorithm 1 in Section 4.3), which constitutes an efficient Stochastic
Subgradient Descent (SSD) -type procedure for iteratively solving our base problem to optimal-
ity. The MESSAGEp algorithm may be seen as a parameterized (relative to the choice of the risk
regularizer), parallel variation of the general purpose T-Level Stochastic Compositional Gradient
Descent (T -SCGD) algorithm, presented and analyzed very recently in [Yang et al., 2018] under
generic assumptions. In turn, the T -SCGD algorithm is a natural generalization of the Basic 2-
Level SCGD algorithm, presented and analyzed earlier in [Wang et al., 2017]. A key feature of
the aforementioned compositional stochastic subgradient schemes is the existence of more than one
(T , in general), pairwise coupled stochastic approximation updates, or levels, each with a dedicated
stepsize, which are executed concurrently through the operation of the algorithm. In the case of the
MESSAGEp algorithm, there exist three such levels (that is, T ≡ 3), and this results naturally, due
our specific problem structure. However, contrary to the T -SCGD algorithm, all three stochastic
approximation levels of the MESSAGEp algorithm are executed completely in parallel within every
iteration, presenting additional operational efficiency, potentially important in various applications.

Pathwise convergence and convergence rate analyses of the T -SCGD algorithm are presented in
[Yang et al., 2018], and [Wang et al., 2017] (where, in the latter, T ≡ 2). However, the respective
structural framework considered in both [Yang et al., 2018] and [Wang et al., 2017], when applied to
the problem class considered in this work, imposes significant restrictions in regard to the possible
choice of the risk regularizer, partially related to the expansiveness and smoothness (or roughness) of
the involved random cost function. This fact significantly limits the type of problems the T -SCGD
algorithm is provably applicable to, at least within the class of risk-averse problems introduced and
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studied herein. For example, when p ≡ 1, arguably the most popular regularizer (·)+, leading to
the mean-upper-semideviation risk measure, is not supported within the framework of [Wang et al.,
2017, Yang et al., 2018]. This is because nonsmooth risk regularizers exhibiting corner points, such
as (·)+, apparently have discontinuous subderivatives, whereas the respective assumptions made in
[Wang et al., 2017, Yang et al., 2018] essentially require the respective risk regularizer to be not
only everywhere differentiable, but to have Lipschitz derivatives, as well. This shortcoming of the
theoretical framework of [Wang et al., 2017, Yang et al., 2018] naturally carries over to higher values
of the semideviation order, p. Naturally, the theoretical narrowness of [Wang et al., 2017, Yang
et al., 2018] motivates closer study of any compositional subgradient algorithm whatsoever, one that
would exploit the special characteristics of a mean-semideviation risk measure. The ultimate goal is
the development of a sufficiently general theoretical framework, which will justify the compositional
optimization approach for the whole class of mean-semideviation risk measures, under as weak
structural assumptions as possible.

Following this direction, and focusing on optimizing mean-semideviation models, we present
a new and flexible set of problem assumptions, substantially weaker than those employed in [Wang
et al., 2017, Yang et al., 2018], under which we analyze the asymptotic behavior of theMESSAGEp al-
gorithm, proposed in our work. Our framework carefully exploits the structure of mean-semideviations,
and presents a probably fundamental, though practically useful, trade-off between the expansiveness
of the random cost function and the smoothness of the chosen risk regularizer, in a very well-defined
sense. As previously outlined, our results are restated, as follows.

First, under appropriate stepsize rules, we establish pathwise convergence of the MESSAGEp

algorithm in the same strong sense as in [Wang et al., 2017, Yang et al., 2018], thus confirming its
asymptotic consistency.

Second, assuming a strongly convex cost function, we study the convergence rate of theMESSAGEp

algorithm, in detail. More specifically, we show that, for fixed semideviation order p > 1 and for
any choice of ε ∈ [0, 1), the MESSAGEp algorithm achieves a squared-L2 solution suboptimality rate
of the order of O(n−(1−ε)/2) iterations. Here, ε is a user-specified parameter, which directly affects
stepsize selection. If, additionally, ε is chosen to be strictly positive, that is, for ε > 0, pathwise con-
vergence is simultaneously guaranteed. This completely novel result establishes a convergence rate
of order arbitrarily close to O(n−1/2) as ε→ 0, while ensuring strongly stable pathwise operation of
the algorithm. In the structurally simpler case where p ≡ 1, the rate order improves to O(n−2/3),
which is sufficient for pathwise convergence as well, and matches existing results in compositional
stochastic optimization, developed earlier along the lines of [Wang et al., 2017].

Third, for the general case of a convex cost function, we show that, for any ε ∈ [0, 1), the
MESSAGEp algorithm with iterate smoothing achieves an L1 objective suboptimality rate of the
order of O(n−(1−ε)/(41{p>1}+4)). As in the strongly convex case, for ε > 0, pathwise convergence
is also simultaneously guaranteed. For ε ≡ 0, this result provides maximal rates of O(n−1/4), if
p ≡ 1, and O(n−1/8), if p > 1, matching the state of the art, as well [Wang et al., 2017, Yang et al.,
2018]. Although those rates may not be particularly satisfying, they quantitatively demonstrate
the remarkable speedup achieved by assuming and leveraging strong convexity for the analysis and
operation of the MESSAGEp algorithm.

The proposed structural framework adequately mitigates the aforementioned technical issues
of that considered in [Wang et al., 2017, Yang et al., 2018]. For example, we show that, when
the random cost function has bounded (random) subgradients and its distribution is generally well-
behaved, the choice of the risk regularizer can be completely unconstrained, regardless of the value
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of p ∈ [1,∞). As a result, under the new framework, the most popular candidate (·)+, but also
every risk regularizer exhibiting corner points, are now valid choices (under appropriate conditions)
for any p, contrary to [Wang et al., 2017, Yang et al., 2018].

Finally, in order to show the superiority of our proposed framework compared to that of [Wang
et al., 2017, Yang et al., 2018], we present a detailed analytical comparison, which rigorously demon-
strates that the class of mean-semideviation programs supported within this work contains the
respective class of problems supported within [Wang et al., 2017, Yang et al., 2018]; further, the
inclusion is strict. Such comparison is made possible by performing careful analysis and by con-
structing non-trivial, non-cornercase counterexamples. As a result, the applicability of compositional
stochastic optimization is established herein for a significantly and strictly wider spectrum of convex
mean-semideviation risk-averse problems, as compared to the state of the art. This fact justifies the
purpose of our work from this perspective, in addition to our algorithmic contribution, as well.

Relation to the Literature: Apparently, the results presented in this work are related to those
developed in [Wang et al., 2017, Yang et al., 2018], for a generic problem setting. Indeed, as already
stated, optimization of mean-upper-semideviation risk measures has been briefly identified in [Wang
et al., 2017, Yang et al., 2018] as a potential application of the compositional algorithms proposed
therein. However, as mentioned above, the assumptions on problem structure employed in [Wang
et al., 2017, Yang et al., 2018] are too restrictive to adequately study the class of mean-semideviation
risk measures introduced herein, which include the mean-upper-semideviation as a single member of
this class. Except for the aforementioned works, and as also discussed above, there is a significant
line of research considering the SAA approach to risk-averse stochastic optimization, both from a
fundamental, theoretical perspective [Shapiro, 2013, Guigues et al., 2016, Dentcheva et al., 2017]
and from the computational one [Dentcheva et al., 2017, Tamar et al., 2017]. As noted in [Wang
et al., 2017, Yang et al., 2018], the compositional, SSD-type optimization algorithms analyzed in
this paper present some major natural advantages over the SAA approach. First, the MESSAGEp

algorithm solves the original risk-averse stochastic program asymptotically to optimality, whereas,
in the SAA approach, the corresponding SAA surrogate to the original program is solved, producing
only an approximate solution; as the number of the sample increases the solution to the SAA
surrogate approaches that of the original stochastic program, in some well defined sense [Shapiro,
2013, Dentcheva et al., 2017]. Second, because of its nature, the SAAs cannot exploit new information
available to the decision maker, so that they can improve their decisions, based on those made so
far; in fact, the SAA surrogate needs to be redefined using new available information, and then
solved afresh. Of course, the MESSAGEp algorithm efficiently exploits new information, due to its
recursive, sequential nature. Third, as a result of the above, SAAs are not suitable for settings where
information is available sequentially, and decisions have to be made adaptively over time. Fourth,
SAAs might often require a very large number of samples for producing accurate approximations to
the optimal decisions corresponding to the original problem, and this might result in optimization
problems whose objective is computationally difficult to evaluate. For more details on this, see
[Wang et al., 2017]. On the contrary, the MESSAGEp algorithm is iterative in nature, and presents
minimal and fixed time and space complexity per iteration.

Organization of the Paper

The rest of the paper is organized as follows. Section 2 establishes the stochastic risk-averse convex
programming setting under study, and provides some elementary, albeit necessary preliminaries on
the theory of risk measures. In Section 3, we constructively introduce the class of mean-semideviation
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risk measures, we study their existence and their structural properties, we discuss specific examples,
and we develop our above mentioned fundamental characterization result. Section 4 is devoted to the
development and analysis of the MESSAGEp algorithm, under our proposed theoretical framework
for convergence, and includes the rigorous comparison of our results with those presented in [Yang
et al., 2018]. Finally, Section 5 concludes the paper.

Note: Some longer proofs of the theoretical results presented in the paper in the form of
Theorems, Lemmata and Propositions are excluded from the main body of the paper for clarity in
the exposition, and are presented in Section 7 (Appendix).

Notation & Definitions

Matrices and vectors will be denoted by boldface uppercase and boldface lowercase letters, re-
spectively. Calligraphic letters and formal script letters will generally denote sets and σ-algebras,
respectively, except for clearly specified exceptions. The operator (·)T will denote vector transposi-
tion. The `p-norm of x ∈ Rn is ‖x‖p , (

∑n
i=1 |x (i)|p)1/p, for all N 3 p ≥ 1. Similarly, the Lp norm

of an appropriately measurable function f (·) will be ‖f‖Lp ,
(∫
|f (x)|p dµ (x)

)1/p for p ∈ [1,∞),
and ‖f‖L∞ , esssupx |f (x)|, where the reference measure µ will be clearly specified by the con-
text. The finite N -dimensional identity operator will be denoted as IN . Additionally, we define
N+ , {1, 2, . . .}, N+

n , {1, 2, . . . , n} and Nn , {0} ∪ N+
n , for n ∈ N+.

If Ω denotes a base sample space and F : RN × Ω → R (referring directly to Ω), then, for the
sake of clarity, we sometimes drop dependence on ω ∈ Ω, and write simply F (x, ω) ≡ F (x) (clear
by the context).

For every set X ⊆ RN , which is nonempty, closed and convex, the Euclidean projection onto X ,
ΠX : RN → X is defined, as usual, as ΠX (x) , argminx̃∈X ‖x̃− x‖2, for all x ∈ RN . Euclidean
projections, as defined above, always exist and are nonexpansive operators.

For every real-valued function f : RN → R, which is differentiable at a point x ∈ RN , the vector
∇f (x) ∈ RN denotes its gradient at x. If, additionally, f is differentiable on X ⊆ RN , the function
∇f : X → RN denotes its gradient function, mapping each x ∈ X to ∇f (x).

If f is nonsmooth and convex, its subdifferential is the closed-valued multifunction ∂f : RN ⇒
RN , defined, for every x ∈ RN , as the set of all gradients each corresponding to a linear underesti-
mator of f , or, in other words,

∂f (x) ,
{
yx ∈ RN

∣∣∣ f (z) ≥ f (x) + yTx (z − x) , ∀z ∈ RN
}
, ∀x ∈ RN . (1)

A subgradient (function) of f , suggestively denoted as ∇f : RN → RN , is defined as any selection
of the subdifferential multifunction ∂f , that is, for every x ∈ RN , it is true that ∇f (x) ∈ ∂f (x);
for brevity, we write ∇f ∈ ∂f . For fixed x ∈ RN , ∇f (x) will be called a subgradient of f at x.

2 Problem Setting & Preliminaries

We now formally introduce the problem of interest in this work. Henceforth, all subsequent proba-
bilistic statements will presume the existence of a common probability space (Ω,F ,P). We refer to
(Ω,F ,P) as the base space. We place no topological restrictions on the sample space Ω. However,
in order for some mild technicalities to be easily resolved, we conveniently assume that (Ω,F ,P)
constitutes a complete measure space.
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Let F : RN × RM → R be a bivariate real-valued mapping, such that, for every x ∈ RN ,
the function F (x, ·) is B

(
RM

)
-measurable and, for every w ∈ RM , the path F (·,w) is (real-

valued) convex (and subdifferentiable). Also, for a given F -measurable (in general) random element
W : Ω→ RM , consider the composite function F̃ : RN × Ω→ R, defined as

F̃ (·, ω) , F (·,W (ω)) , ∀ω ∈ Ω. (2)

It easily follows that, for every x ∈ RN , the function F̃ (x, ·) ≡ F (x,W (·)) is an F -measurable
(in general), real-valued random variable. We additionally assume that, for every x ∈ RN , F̃ (x, ·)
belongs to the Lebesgue space Lq for some fixed choice of q ∈ [1,∞], relative to the base mea-
sure P, that is, F̃ (x, ·) ∈ Lq (Ω,F ,P;R) , Zq. Of course, if, for every x ∈ RN , F (x, ·) ∈
Lq
(
RM ,B

(
RM

)
,PW ;R

)
, where PW is the Borel pushforward of W , then F̃ (x, ·) ∈ Zq, as well.

Hereafter, F (·,W ) will be referred to as a random cost function.
With the term risk measure, we refer to some fixed and known real-valued functional on the

Banach space Zq [Shapiro et al., 2014]. Among all risk measures on Zq, we pay special attention to
those exhibiting the following basic structural characteristics.

Definition 1. (Convex-Monotone Risk Measures) A real valued functional on Zq, ρ : Zq → R,
is called a convex-monotone risk measure, if and only if it satisfies the following conditions:

R1 (Convexity): For every Z1 ∈ Zq and Z2 ∈ Zq, it is true that

ρ (αZ1 + (1− α)Z2) ≤ αρ (Z1) + (1− α) ρ (Z2) , (3)

for all α ∈ [0, 1].

R2 (Monotonicity): For every Z1 ∈ Zq and Z2 ∈ Zq, such that Z1 (ω) ≥ Z2 (ω), for P-almost all
ω ∈ Ω, it is true that ρ (Z1) ≥ ρ (Z2).

For a possibly convex-monotone risk measure ρ : Zq → R (following Assumption 1), we will be
interested in the “static” stochastic program

minimize
x

ρ
(
F̃ (x, ·)

)
≡ ρ (F (x,W )) , φF̃ (x)

subject to x ∈ X
, (4)

where the set of feasible decisions X ⊆ RN is assumed to be closed and convex.
Under the standard problem setting outlined above, it is straightforward to formulate the fol-

lowing elementary result, provided here without proof, and for completeness.

Proposition 1. (Convexity of Risk-Function Compositions [Shapiro et al., 2014]) Consider
a real-valued random function f : RN × Ω → R, as well as a real-valued risk measure ρ : Zq → R.
Suppose that, for every ω ∈ Ω, f (·, ω) is convex and that ρ is convex-monotone. Then, the real-valued
composite function φf (·) ≡ ρ (f (·, •)) : RN → R is convex.

Proposition 1 shows that, under the respective assumptions, (4) constitutes a convex mathe-
matical program in standard form. Thus, application of a subgradient method would require that
some selection of the subdifferential multifunction ∂φF̃ can be evaluated at will, at any x ∈ X .
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However, for most choices of the random cost function F (·,W ) and of the risk measure ρ, even
the composition φF̃ (·) ≡ ρ (F (·,W )) is impossible to be evaluated exactly, let alone (a selection
of) ∂φF̃ . Instead, we may be given either realizations of the random exogenous information W , or
direct evaluations of F (·,W ) and a subgradient, ∇F (·,W ), at some test decision candidate x. It
might also be desirable that decision making is performed sequentially over time, where decisions
are updated adaptively as new information arrives. Such settings motivate the consideration of
SSD-type algorithms for solving (4), which are of main interest in this paper.

Some basic assumptions follow, fairly standard in the literature of stochastic approximation
[Shapiro et al., 2014, Wang et al., 2017, Yang et al., 2018, Kushner and Yin, 2003]. To this end, let
us formally introduce the elementary concept of a IID process. Then, our assumptions follow.

Definition 2. (IID Process) A stochastic sequence {W n}
n∈N+ is called IID if and only if it

consists of statistically independent, RM -valued random elements, identically distributed according
to a fixed Borel measure PW .

Assumption 1. (Availability of Information) Either one, or more, mutually independent,
IID sequences are available sequentially, all distributed according to PW .

Remark 1. Note that in Assumption 1 we do not require that the processW n is actually observable
to the user, but only available, either in the form of a data stream, or by simulation. �

Assumption 2. (Existence of an SO) There exists a mechanism, called a Sampling Oracle
(SO), which, given x ∈ X and w ∈ RM , returns either F (x,w), or ∇F (x,w), a subgradient
of F relative to x, or both. It is further assumed that the SO has direct access to all available
information streams, according to Assumption 1.

In this work, we propose and analyze efficient algorithms for solving (4) under Assumptions 1
and 2, and explicitly assuming no prior knowledge of either the random cost function F (·,W ), or its
respective subgradients. We will be restricting our attention to a new class of convex-monotone risk
measures with, however, wide applicability, and whose general structure follows the so-called Mean-
Risk Model ([Shapiro et al., 2014], Section 6.2). This special class of risk measures is introduced and
analyzed, in detail, in Section 3.

3 Mean-Semideviation Models

Under the Mean-Risk Model paradigm [Shapiro et al., 2014], a risk measure ρ : Zq → R is defined,
for each random cost Z ∈ Zq, as

ρ (Z) , E {Z}+ cD {Z} , (5)

where the functional D : Zq → R constitutes a dispersion measure, and provided that the respective
quantities are well defined, for the particular choice of q ∈ [1,∞]. The dispersion measure D may be
conveniently thought as a penalty, weighted by the penalty multiplier c ≥ 0, effectively quantifying
the uncertainty of the particular cost Z.

In this section, we introduce a special class of dispersion measures, which constitute natural gen-
eralizations of the well-known upper semideviation of order p [Shapiro et al., 2014]. This new class of
dispersion measures is termed here as generalized semideviations. Reasonably enough, risk measures
of the form of (5), where the respective dispersion measure constitutes a generalized semideviation
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will be called either mean-semideviation risk measures, or, interchangeably, mean-semideviation
models, or, simply, mean-semideviations.

This section is structured as follows. First, the simple notion of a risk regularizer is intro-
duced; risk regularizers constitute the basic building block of generalized semideviations. The basic
properties of risk regularizers are concisely presented, and a formal definition of generalized semide-
viations is also formulated, along with a brief discussion related to their practical relevance. Mean-
semideviation risk measures are then formally introduced, along with their basic properties, and
specific examples are discussed, highlighting their versatility. Next, we develop a constructive charac-
terization result, essentially showing that the class of all mean-semideviation risk measures is almost
in one-to-one correspondence with the class of cumulative distribution functions of all integrable
random variables (on the line). This result readily demonstrates an apparent generality of mean-
semideviations, as well. Lastly, the usefulness, flexibility and effectiveness of mean-semideviation
risk measures are demonstrated on a classical, chance-constrained newsvendor model. In particular,
risk regularizers (each inducing a mean-semideviation risk measure) are put in context, and their
construction is explicitly discussed, reflecting the special characteristics of the specific newsvendor
problem under consideration, and the objectives of the decision maker.

3.1 Basic Concepts

We start by introducing the concept of a risk regularizer. Risk regularizers are simple, real-valued
functions of one variable, which are reasonably structured, so that they, on the one hand, can be
used to quantify risk (see below) and, on the other, can result in problems which can be solved
efficiently and exactly via convex stochastic optimization.

Definition 3. (Risk Regularizers) A real-valued function R : R→ R is called a risk regularizer,
if it satisfies the following conditions:

S1 R is convex.

S2 R is nonnegative.

S3 R is nondecreasing.

S4 For every α ≥ 0, it is true that R (x+ α) ≤ R (x) + α, for all x ∈ R.

Fig. 3.1 illustrates the shapes of various risk regularizers, other than the arguably most obvious
example of the positive part function (·)+. Note that a risk regularizer need not be smooth (a trivial
example is (·)+); several of the examples of Fig. 3.1 are indeed nonsmooth, with the respective
corner points highlighted by black dots.

Risk regularizers of Definition 3 may be further structurally characterized via the following simple
result.

Proposition 2. (Characterization of R) Consider a real-valued function R : R→ R, satisfying
condition S3 of Definition 4. Then, condition S4 holds if and only if R is nonexpansive.

Proof of Proposition 2. First, assume that condition S4 holds. Then, by the fact that R is nonde-
creasing (S3), it is true that

|R (x)−R (y)| ≡ (R (x)−R (y))1{x≥y} + (R (y)−R (x))1{x<y}
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≡ (R (y + (x− y))−R (y))1{x≥y} + (R (x+ (y − x))−R (x))1{x<y}

≤ (x− y)1{x≥y} + (y − x)1{x<y} ≡ |x− y| , (6)

for all (x, y) ∈ R2, showing that R is a nonexpansive map. Conversely, assume that R is nonexpan-
sive. Then, for any α ≥ 0, it is true that

0 ≤ R (x+ α)−R (x) ≡ |R (x+ α)−R (x)|
≤ |x+ α− x| ≡ α, (7)

for all x ∈ R, verifying condition S4. �

At this point, let us emphasize the elementary fact that, because of convexity, every (real-valued)
risk-regularizer must also be differentiable almost everywhere, relative to the Lebesgue measure on
the Borel space (R,B (R)). This also follows either by monotonicity, or due to the fact that a risk
regularizer is nonexpansive and, therefore, Lipschitz continuous on R. Further, because of convexity,
the set of Lebesgue measure zero of points in R, where a risk regularizer is nondifferentiable, is at
most countable.

The class all possible risk regularizers induces that of generalized semideviations, which con-
stitute the class of dispersion measures considered in this paper. The definition of a generalized
semideviation is presented below.

Definition 4. (Generalized Semideviations) Fix p ∈ [1,∞) and choose a risk regularizer R :
R → R. A dispersion measure DRp : Zq → R is called a generalized semideviation of order p, if and
only if, for Z ∈ Zq,

DRp {Z} , (E {(R (Z − E {Z}))p})1/p ≡ ‖R (Z − E {Z})‖Lp , (8)

where it is assumed that all involved quantities are well defined and finite.

The power of generalized semideviations is in the fact that they form a parametric family relative
to the choice of the risk regularizer R; different risk regularizers correspond to different rules for
ranking the relative effect of both riskier (higher than the mean) and less risky (lower than the mean)
events, corresponding to specific regions in the range of the cost. For more details, see Section 3,
where we illustrate the versatility of generalized semideviations via additional examples, considering
various specific choices for R, with the well known upper-semideviation dispersion measure [Shapiro
et al., 2014] being the prototypical representative of this class.

3.2 Mean-Semideviations: Definition, Existence & Structure

Utilizing the concept of generalized semideviations, we may now introduce the class of risk measures
of central interest in this work, as follows.

Definition 5. (Mean-Semideviation Risk Measures) Fix p ∈ [1,∞) and choose a risk regu-
larizer R : R → R. The mean-semideviation of order p, induced by R, or MSRp , for short, is the
real-valued risk measure defined, for Z ∈ Zq, as

1

ρ (Z) ≡ ρRp (Z; c) , E {Z}+ cDRp {Z} , (9)
1A mean-semideviation risk measure will be denoted either as ρRp (Z; c), which is proper, or ρ (Z), which is simpler,

as long as the choices of p,R and c are clearly specified.
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Figure 3.1: Some examples of both smooth and nonsmooth risk regularizers. Black dots highlight
the respective corner points of nondifferentiability (some imperceptible).

where c ≥ 0 constitutes a fixed penalty multiplier, and provided that all involved quantities are well
defined and finite.

Next, we state and prove a small number of relatively simple results, related to the existence of
mean-semideviation risk measures, introduced in Definition 5, as well as their functional structure.
First, as it might be expected, we show that mean-semideviation risk measures of order p may be
naturally associated with costs which are also in Lp (i.e., choosing p ≡ q). Recall that, throughout
the paper, p is reserved for specifying the order of the mean-semideviation risk measure under
consideration, whereas q is related to the integrability of the respective cost.

Proposition 3. (Compatibility of p’s and q’s) Fix p ∈ [1,∞), c ≥ 0, and choose any risk
regularizer R : R→ R. Then, as long as q ≥ p, the MSRp risk measure ρRp (·; c) is well-defined and
finite, for every Z ∈ Zq.

Proof of Proposition 3. Since q ≥ p ≥ 1, it is trivial that Z ∈ Z1, simply due to the inclusion
Z1 ⊃ Z2 ⊃ . . ., for any choice of q. Thus, the expectation of every Z ∈ Zq exists and is finite, and
what remains is to prove the result for the dispersion measure DRp .

For simplicity, let q ≡ p. Using the fact that E {Z} is finite, it is true that, for every Z ∈ Zp,
the shifted cost Z − E {Z} is in Zp. It thus suffices to show that, for every Z − E {Z} , X ∈ Zp,
R (X) is in Zp, as well. Because the risk regularizer R is nonnegative (condition S2), the integral
E {(R (X))p} exists. Also, due to condition S4 of Definition 3, it follows that, for every x ≥ 0,
R (x) ≤ R (0) + x, and since R is nondecreasing (S3), it is true that R (x) ≤ R (0) + |x|, for all
x ∈ R. Setting x ≡ X, this yields

0 ≤ R (X) ≤ R (0) + |X| , (10)
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and since X ∈ Zp, R (0) + |X| ∈ Zp, as well. Consequently, it is true that

(E {(R (X))p})1/p ≤ (E {(R (0) + |X|)p})1/p
< +∞, (11)

showing that DRp and, therefore, ρRp (·; c), are both well defined and finite, for every Z ∈ Zp.
Now, due to the inclusion Z1 ⊃ Z2 ⊃ . . ., we know that, if Z ∈ Zq, for some q ≥ p, then Z ∈ Zp,

as well. Enough said. �

Hereafter, for the sake of generality, we will implicitly assume that p and q are compatible, so that
existence and finiteness of the resulting risk measures considered is ensured. Of course, in actual
applications, Proposition 3 may be directly invoked on a case-by-case basis, in order to select the
order of the particular dispersion measure of choice, depending on the nature of the random cost,
or a family of those, under study.

After characterizing existence and finiteness of mean-semideviation risk measures, as introduced
in Definition 5, we focus on their structural properties, from a functional point of view. As the
following result suggests, mean-semideviation risk measures are indeed convex-monotone under a
standardized assumption on the penalty multiplier c.

Theorem 1. (When are Mean-Semideviations Convex-Monotone?) Fix p ∈ [1,∞) and
choose any risk regularizer R : R → R. Then, as long as c ∈ [0, 1], the MSRp risk measure ρRp (·; c)
is convex-monotone; that is, it satisfies both conditions R1 and R2.

Proof of Theorem 1. Let us start with verifying convexity (R1). Since the expectation term of
ρRp (·; c) is a linear functional on Zq, it will suffice to show that the generalized semideviation term
DRp is convex. Indeed, for every Z1 ∈ Zq, Z2 ∈ Zq and every α ∈ [0, 1], we may write

DRp {αZ1 + (1− α)Z2} ≡ ‖R (αZ1 + (1− α)Z2 − E {αZ1 + (1− α)Z2})‖Lp
≡ ‖R (α (Z1 − E {Z1}) + (1− α) (Z2 − E {Z2}))‖Lp
≤ ‖αR ((Z1 − E {Z1})) + (1− α)R (Z2 − E {Z2})‖Lp
≤ α ‖R ((Z1 − E {Z1}))‖Lp + (1− α) ‖R (Z2 − E {Z2})‖Lp
≡ αDRp {Z1}+ (1− α)DRp {Z2} , (12)

where the first inequality is true due to conditions S1 (convexity) and S2 (nonnegativity), and the
second is due to the triangle (Minkowski) inequality. Thus, DRp is a convex functional, which means
that ρRp (·; c) is also convex on Zq. Note that the value of c ≥ 0 is not crucial in order to show
convexity of ρRp (·; c).

Let us now study monotonicity (R2) of the risk measure ρRp (·; c). For every Z1 ∈ Zq and
Z2 ∈ Zq, such that Z1 (ω) ≥ Z2 (ω), for P-almost all ω ∈ Ω, we have

ρRp (Z2; c) ≡ E {Z2}+ c ‖R (Z2 − E {Z2})‖Lp
≤ E {Z2}+ c ‖R (Z1 − E {Z2})‖Lp
≡ E {Z2}+ c ‖R (Z1 − E {Z1}+ E {Z1} − E {Z2})‖Lp
≤ E {Z2}+ c ‖R (Z1 − E {Z1}) + E {Z1} − E {Z2}‖Lp
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≤ E {Z2}+ c (E {Z1} − E {Z2}) + c ‖R (Z1 − E {Z1})‖Lp , (13)

where the first inequality is due to conditions S2 (nonnegativity) and S3 (monotonicity), the second
is due to conditions S2 (nonnegativity), S4 (nonexpansiveness), as well as the fact that E {Z1} ≥
E {Z2}, and the third is again due to the triangle inequality. From (13), we readily see that, as long
as c ∈ [0, 1], we may further write

ρRp (Z2; c) ≤ E {Z1}+ c ‖R (Z1 − E {Z1})‖Lp ≡ ρ
R
p (Z1; c) , (14)

completing the proof of the theorem. �

We may now invoke Proposition 1, presented earlier, to immediately obtain the following key
corollary. The proof is trivial and, thus, omitted.

Corollary 1. (When is (4) Convex?) Fix p ∈ [1,∞) and choose any risk regularizer R : R→ R.
Then, as long as c ∈ [0, 1], the composite function φF̃ (·) ≡ ρRp (F (·,W ) ; c) ≡ ρ (F (·,W )) is convex
on RN , and (4) constitutes a convex stochastic program.

Corollary 1 is an important result, because it shows that, for every mean-semideviation risk
measure, or equivalently, for every risk regularizer of choice, problem (4) would be exactly solvable
via, for instance, subgradient methods, if the function φF̃ was known in advance. This fact reinforces
our hope that it might indeed be possible to solve (4) to optimality, utilizing some carefully designed
stochastic search, or, more specifically, and based on the assumed subdifferentiability of F (·,W ),
stochastic subgradient algorithm. Of course, such an algorithm should be designed to work under
Assumptions 1 and 2, without the need for explicit knowledge of F (·,W ), or ∇F (·,W ).
Remark 2. (Coherence?) We should mention that mean-semideviations are not coherent risk
measures ([Shapiro et al., 2014], Section 6.3), since they do not satisfy the axiomatic property of
positive homogeneity. This is simply due to the fact that, in general, one may find choices for R
such that

‖R (tZ − E {tZ})‖Lp 6= t ‖R (Z − E {Z})‖Lp , (15)

for some t > 0 and Z ∈ Zq. Nevertheless, mean-semideviations may be readily shown to satisfy
translation equivariance, although such property is not explicitly required in this work. As a result,
except for being convex-monotone, mean-semideviations also belong to the class of convex risk
measures [Föllmer and Schied, 2002, Shapiro et al., 2014]. �

3.3 Examples of Mean-Semideviation Models

Before moving on, it would be instructive to discuss some examples of mean-semideviations, high-
lighting the versatility of this particular class of risk measures. We start from simple, illustrative
choices as far as the involved risk regularizer is concerned, and then we generalize.

3.3.1 Mean-Upper-Semideviations

The simplest, prototypical example of a mean-semideviation risk measure is the mean-upper-semide-
viation of order p ([Shapiro et al., 2014], Sections 6.2.2 & 6.3.2), which is constructed by choosing
as risk regularizer the function

R (x) , (x)+ , max {x, 0} , x ∈ R, (16)
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yielding the risk measure

ρ (Z) ≡ E {Z}+ c
(
E
{(

(Z − E {Z})+

)p})1/p
≡ E {Z}+ c

∥∥(Z − E {Z})+

∥∥
Lp
, (17)

for Z ∈ Zq. Of course, in this case, it is trivial to show that R satisfies conditions S1-S4 of
Definition 3. Recall that we have assumed that q is appropriately chosen, such that ρ is a well
defined, real-valued functional on Zq.

3.3.2 Entropic Mean-Semideviations

Our second example is a generalization of the mean-upper-semideviation risk measure discussed in
the previous example. Here, the risk regularizer R is chosen itself from a parametric family, as

R (x; t) ,
1

t
log (1 + exp (tx)) , (x, t) ∈ R× R++, (18)

where t is a parameter, regulating the sharpness of the function at zero. It is trivial to verify
conditions S2 (nonnegativity) and S3 (monotonicity). Also, for fixed t, the first derivative of R
relative to x is the logistic function

∂R
∂x

(x; t) ≡ exp (tx)

1 + exp (tx)
∈ (0, 1) , ∀x ∈ R, (19)

showing that R is a contraction mapping, immediately verifying condition S4 (nonexpansiveness),
via Proposition 2. Likewise, the second derivative of R is given by

∂2R
∂x2 (x; t) ≡ t exp (tx)

(1 + exp (tx))2 > 0, ∀x ∈ R, (20)

and, thus, S1 (convexity) is readily verified, as well. Hence,R is a valid risk regularizer. Alternatively
and to illustrate the procedure, we may verify condition S4 directly; for fixed t > 0, for every α ≥ 0
and for every x ∈ R, we may write

R (x+ a; t) ≡ 1

t
log (1 + exp (t (x+ α)))

≡ 1

t
log

(
1

exp (tα)
+ exp (tx)

)
+ α

≤ 1

t
log (1 + exp (tx)) + α

≡ R (x; t) + α, (21)

where the inequality is due to the fact that tα ≥ 0. It is also easy to see that, for every x ∈ R,
R (x; t) −→

t→∞
(x)+, showing that R (·; t) constitutes a smooth approximation to the risk regularizer

of the mean-upper-semideviation risk measure discussed previously.
The resulting risk measure is called an entropic mean-semideviation of order p, and may be

expressed as
ρ (Z) ≡ E {Z}+

c

t
‖log (1 + exp (t (Z − E {Z})))‖Lp , (22)

for Z ∈ Zq. For obvious reasons, this risk measure may be considered a soft version of the mean-
upper-semideviation risk measure.
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3.3.3 CDF-Antiderivative (CDFA) Mean-Semideviations

We now show that, in fact, both previously presented examples are special cases of a much more
general approach, which may be utilized for the construction of risk regularizers. To this end, let
Y : Ω → R be a random variable in Z1, with cumulative distribution function (cdf) FY . Consider
the choice

R (x) ,
∫ x

−∞
FY (y) dy, x ∈ R, (23)

where, because FY is a nonnegative Borel measurable function, the involved integration is always
well-defined (might be +∞, though), in the sense of Lebesgue. The particular antiderivative of the cdf
FY , as defined in (23), constitutes a very important quantity in the theory of stochastic dominance;
see, for instance, related articles [Ogryczak and Ruszczyński, 1999] and [Ogryczak and Ruszczyński,
2002] for definition and insights. In particular, via Fubini’s Theorem (Theorem 2.6.6 in [Ash and
Doléans-Dade, 2000]), R may be easily shown to admit the alternative integral representation

R (x) ≡ E
{

(x− Y )+

}
, ∀x ∈ R. (24)

Exploiting the assumption that Y ∈ Z1, it follows that R (x) < +∞, for every x ∈ R. Also,
from (24), it is trivial to see that, because of the structure of the function (·)+, R is convex (S1),
nonnegative (S2) and nondecreasing (S3) on R. Nonexpansiveness (S4) may also be readily verified.

Consequently, R is a valid risk regularizer, and the resulting risk measure, called a CDF-
Antiderivative (CDFA) mean-semideviation, may be expressed in various forms as

ρ (Z) ≡ E {Z}+ c

∥∥∥∥∥
∫ Z−E{Z}

−∞
FY (y) dy

∥∥∥∥∥
Lp

≡ E {Z}+ c
∥∥∥E{(x− Y )+

}∣∣
x≡Z−E{Z}

∥∥∥
Lp

≡ E {Z}+ c

∥∥∥∥∫
R

([Z − E {Z}]− y)+ dPY (y)

∥∥∥∥
Lp

≡ E {Z}+ c
∥∥E{([Z − E {Z}]− Y )+

∣∣Z}∥∥Lp , (25)

for Z ∈ Zq, where Y can be arbitrarily taken to be independent of Z and PY denotes the Borel
pushforward of Y .

We may now verify that both mean-upper-semideviation and entropic mean-semideviation risk
measures discussed above are special cases of CDFA mean-semideviations. In mean-upper-semidevi-
ations, the respective risk regularizer is an antiderivative (taken piecewise) of the cdf corresponding
to the Dirac measure at zero. In entropic mean-semideviations, the respective risk regularizer is an
antiderivative of (19) (by monotone convergence and via a sequential argument), which is the cdf of
a zero-mean element in Z1. In both cases, the antiderivatives involved are of the form of (23).

3.3.3.1 Special Case: Gaussian Antiderivative (GA) Mean-Semideviations An inter-
esting subclass of CDFA mean-semideviations is the one resulting from taking antiderivatives of the
cdf of a standard Gaussian random variable Y ∼ N (0, 1). In this case, the simplest possible risk
regularizer may be constructed as

R (x) ,
∫ x

−∞
Φ (y) dy ≡ xΦ (x) + ϕ (x) , x ∈ R, (26)
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where Φ : R→ [0, 1] and ϕ : R→ R denote the standard Gaussian cdf and density, respectively. This
particular antiderivative of Φ appears naturally in standard treatments of the so-called ranking-&-
selection, or best arm identification problem and, more specifically, in lookahead selection policies,
such as the Knowledge Gradient and the Expected Improvement [Frazier et al., 2008, Ryzhov, 2016].

The resulting mean-semideviation risk measure is called a Gaussian Antiderivative (GA) mean-
semideviation of order p, and may be expressed as

ρ (Z) ≡ E {Z}+ c ‖(Z − E {Z})Φ (Z − E {Z}) + ϕ (Z − E {Z})‖Lp , (27)

for Z ∈ Zq. Of course, as it happens for all mean semideviations, the functional ρ, as defined in
(27), is a convex risk measure for every c ≥ 0, and a convex-monotone risk measure, if c ∈ [0, 1].

3.4 A Complete Characterization of Mean-Semideviations

As a result of the discussion in Section 3.3.3 above, it follows that risk regularizers may be formed
by taking antiderivatives of the cdf of any integrable random variable of choice, resulting in a vast
variety of mean-semideviation risk measures, all sharing a common favorable structure.

Here, we show that if we start from a given risk regularizer R, the converse statement is also
true. In this respect, we state and prove the following important result.

Theorem 2. (CDF-Based Representation of Risk Regularizers) Let Y : Ω→ R be a random
variable, such that, for every x ∈ R, E

{
(x− Y )+

}
< +∞, and let FY : R → [0, 1] denote its cdf.

Then, for any fixed 0 ≤ CS ≤ 1 and CI ≥ 0, the function R : R→ R defined as

R (x) , CS

∫ x

−∞
FY (y) dy + CI , ∀x ∈ R, (28)

is a valid risk regularizer, where integration may be interpreted either in the improper Riemann sense
(for computation), or in the standard sense of Lebesgue (for derivation).

Conversely, let R : R → R be any risk regularizer. Then, there exist some random variable
Y : Ω → R, satisfying E

{
(x− Y )+

}
< +∞, for all x ∈ R, with cdf FY : R → [0, 1], and constants

0 ≤ CS ≤ 1 and CI ≥ 0, such that, for every x ∈ R, the representation (28) is valid. In particular,
if R′+ : R → R denotes the right derivative of R, it is always true that CS ≡ supx∈RR

′
+ (x),

CI ≡ infx∈RR (x), and, as long as R is nonconstant, it holds that CS 6= 0, and FY is given by
FY (x) ≡ C−1

S R
′
+ (x) , for all x ∈ R.

Proof of Theorem 2. See Section 7.1 (Appendix). �

Theorem 2 is important for two main reasons, the first being related to the forward statement,
and the second to the converse. On the one hand, Theorem 2 provides us with the clean, very
versatile and analytically friendly integral formula (28) for constructing risk regularizers of various
shapes and types. On the other hand, it informs us that, necessarily, any risk regularizer can be
expressed in the form of (28) and, as a result, all possible risk regularizers may be constructed
utilizing (28), each time for some suitably chosen cdf. Therefore, risk regularizers are completely
characterized by the cdf-based representation of Theorem 2.

Of course, every risk regularizer induces a unique mean-semideviation risk measure. But also
notice that, trivially, every mean-semideviation risk measure corresponds to a uniquely specified
risk regularizer (as a functional, or when all costs in the corresponding Lp-space Zp -the largest
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such space, for the smallest possible q- are considered). Therefore, Theorem 2 provides a complete
characterization of the whole class of mean-semideviation risk measures. In particular, Theorem 2
implies that the class of all mean-semideviation risk measures is almost in one-to-one correspondence
with the class of cdfs of all integrable R-valued random elements. The “almost” in the preceding
statement is due to the presence of constants CS and CI in Theorem 2, and that actually slightly
less is required than (absolute) integrability of the involved random variable Y .

3.5 Practical Illustration of Mean-Semideviation Models

We conclude this section by briefly outlining the relevance of mean-semideviation models in ap-
plications, also putting our proposed risk regularizers in context. More specifically, we consider
a chance-constrained version of the prototypical, single-product newsvendor problem (see, for in-
stance, Chapter 1 in [Shapiro et al., 2014]), upon which we are based in order to formulate a doubly
risk-averse newsvendor problem, which jointly controls both unmet demand and holding costs. We
also explicitly demonstrate how the respective risk regularizer may be potentially designed, based
on the characteristics of the particular problem under consideration.

Although the single-product newsvendor problem (and its variations) indeed constitutes a one-
dimensional, toy example, it provides insights and highlights some important features of the mean-
semideviation risk measures advocated herein. Additionally, the simplicity of such a problem facili-
tates numerical solution, and enables us to present some numerical results, verifying the effectiveness
of the proposed mean-semideviation risk measures experimentally, as well.

3.5.1 A Chance-Constrained Single-Product NewsVendor

Suppose that a newsvendor is interested in optimally producing newspapers for an uncertain market,
so that they minimize the cost incurred by actual production and by not meeting market demand,
while respecting their holding capacity, or a predefined holding cost target. Let KP > 0, KU > 0
and KH > 0 be known constants, standing for the production, unmet demand and holding costs per
production unit. Also let W : Ω → R+ be the random market demand, a random variable with cdf
FW : R→ [0, 1], for simplicity assumed to be absolutely continuous relative to the Lebesgue measure
on (R,B (R)). Since the market is uncertain, the newsvendor resorts to stochastically deciding their
production plan by solving the chance-constrained program

minimize
x

KPx+ E
{
KU (W − x)+

}
subject to P

(
KH (x−W )+ > h

)
≤ α

x ≥ 0

, (29)

where, also for simplicity, we assume that the decision variable is real-valued, and where 0 ≤ α ≤ 1
constitutes the newsvendor’s tolerance in the event that their holding cost KH (x−W )+ will exceed
a prescribed threshold h ≥ 0. Both α and h are fixed design parameters decided by the newsvendor
beforehand. Chance-constrained newsvendor problems similar to (29) have been previously consid-
ered in the literature; see, for instance, the related article [Zhang et al., 2009]. Here, an important
detail is that, despite the probabilistic constraint, problem (29) is risk-neutral as far as treatment
of unmet demand is concerned. This is because only the expectation of the cost of not meeting the
demand, corresponding to KU (W − x)+, is considered in the objective.

20



Problem (29) exhibits some interesting features and may be significantly simplified, as follows.
First, we may observe that, for every fixed choice of h ≥ 0,

P
(
KH (x−W )+ > h

)
= P

(
KH (x−W ) > h

)
≡ P

(
W < x− h

KH

)
≡ FW

(
x− h

KH

)
, ∀x ∈ R. (30)

Consequently, it is true that

P
(
KH (x−W )+ > h

)
≤ α ⇐⇒ FW

(
x− h

KH

)
≤ α

⇐⇒ x ≤ F−1
W (α) +

h

KH
(31)

⇐⇒ P (W < x) ≤ FW
(
F−1
W (α) +

h

KH

)
, (32)

where, due to FW being continuous, the pseudo-inverse or quantile function F−1
W : [0, 1] → R+ is

defined as
F−1
W (α) , inf {x ∈ R |FW (x) ≥ α} ≡ sup {x ∈ R |FW (x) ≤ α} . (33)

Thus, problem (29) is convex and may be reformulated as

minimize
x

KPx+ E
{
KU (W − x)+

}
subject to x ∈

[
0, F−1

W (α) +
h

KH

] . (34)

Hereafter, without loss of generality, we may assume that α and h are chosen such that F−1
W (α) +

h/KH > 0. Otherwise, the problem is trivially solved at x∗ ≡ 0. To be fully compatible with the
generic notation utilized in this paper, we may also define F (·, •) , KP (·) +KU ((•)− (·))+ , and

X ,
[
0, F−1

W (α) + h/KH
]
.

Next, let us consider the derivative of the objective of (34), relative to x. We have

∇E {F (x,W )} = KP −KUP (W ≥ x) , ∀x ∈ X . (35)

Hence, unlessKU > KP , it readily follows that, for every x ∈ X , ∇E {F (x,W )} ≥ 0, again implying
that the choice x∗ ≡ 0 constitutes a solution of (34); in other words, producing nothing is always
optimal whenever KU ≤ KP . On the other hand, it is apparently true that ∇E {F (x,W )} < 0, for
all x ∈ X , if and only if

KP −KU (1− P (W < x)) < 0, ∀x ∈ X , (36)

implying that the condition

KP −KU

(
1− FW

(
F−1
W (α) +

h

KH

))
< 0 (37)
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is sufficient to ensure negativity of∇E {F (x,W )} everywhere within the feasible set X (where (32) is
always satisfied), in which case the choice x∗ ≡ F−1

W (α) +h/KH constitutes the optimal production
level. Putting it altogether, whenever

FW

(
F−1
W (α) +

h

KH

)
> 0, (38)

the condition
KU

(
1− FW

(
F−1
W (α) +

h

KH

))
≤ KP < KU (39)

ensures that problem (29) admits nontrivial solutions, thus being of technical interest.
Problem (29) may be solved in closed form. Indeed, either by considering the Karush-Kuhn-

Tucker (KKT) conditions for problem (29) (for a constraint qualification, we may observe that
Slater’s condition is satisfied trivially whenever F−1

W (α)+h/KH > 0), or by looking at its geometric
structure directly, it may be easily shown that its optimal solution may be expressed analytically as

x∗ =


0, if KU ≤ KP

min

{
F−1
W

(
KU −KP

KU

)
, F−1

W (α) +
h

KH

}
, if KU > KP , (40)

representing the newsvendor’s optimal decision in regard to the quantity of newspapers they would
have to plan for, before the random market demand W is revealed.

Remark 3. Problems of the type of (29) are meaningful in various settings; specifically, they are
most suitable when holding is operationally more important than unmet demand. For instance, it
might be the case that the event where holding exceeds some threshold might have severe economic
consequences, while not meeting the demand might be tolerable, although undesirable.

Additionally and perhaps more importantly, we should mention that a chance-constrained ap-
proach such as that adopted in (29) allows to efficiently blend economic with physical quantities in a
single stochastic program. This is simply due to the fact that by defining a quantity h̃ , h/KH ≥ 0,
the probabilistic constraint of (29) may be written as

P
(

(x−W )+ > h̃
)
≤ α, (41)

implying that, if we want to, we may directly choose h̃ as a probabilistic upper bound directly on
the excess production (x−W )+.

The modification above can be very useful if we are willing to consider the problem

minimize
x

KPx+ E
{
KH (x−W )+

}
subject to P

(
KU (W − x)+ > u

)
≤ α

x ≥ 0

, (42)

which constitutes a dual version of the initial newsvendor problem (29) resulting by interchanging
the two respective stochastic costs and where, similarly to (29), u ≥ 0 is a prescribed threshold.
In this case, unmet demand is operationally more important than holding, by choice. Of course,
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problem (42) is structurally very similar to (29), and can be analyzed via almost the same procedure
as above. By defining ũ , u/KU ≥ 0, problem (42) may be reformulated as

minimize
x

KPx+ E
{
KH (x−W )+

}
subject to P

(
(W − x)+ > ũ

)
≤ α

x ≥ 0

, (43)

where ũ can now be preselected directly. We may readily observe that the objective of (43) constitutes
an economic quantity (a cost), whereas the probabilistic constraint is placed on the unmet demand
itself, which, of course, is a physical quantity. This modification can be extremely useful in a
more realistic scenario, since in many practical cases the unit cost of unmet demand, KU , is either
completely unknown, or extremely difficult to estimate based on experience. �

3.5.2 A Doubly Risk-Averse Single-Product NewsVendor

Suppose now that, due to high variability of the market demand, the newsvendor realizes that min-
imizing their unmet demand cost in expectation does not constitute a very meaningful objective.
Thus, the newsvendor would like to decide on their newspaper production size by explicitly account-
ing for market variability in their model and, because they are reasonable, they are willing to settle
with a potentially slightly higher expected monetary penalty for not meeting market demand. In
effect, the newsvendor is interested in making their decision by additionally considering the risk in-
curred due to stochastic variability in the resulting unmet demand, the latter realized when market
demand is revealed. In other words, the newsvendor would like to come up with a meaningful doubly
risk-averse version of the original, chance-constrained problem (29).

The newsvendor may think as follows. For every fixed and feasible production decision x ∈ X ,
if the noisy unmet demand (W − x)+ is smaller than E

{
(W − x)+

}
, which is the newsvendor’s

expectation, then there is no risk incurred, since the newsvendor has been prepared for and has
agreed to settle with a cost of unmet demand equal to E

{
KU (W − x)+

}
. In an actual production

scenario, E
{

(W − x)+

}
might correspond to a small quantity of newspapers which are not actually

produced, but for which resources have been allocated beforehand, to compensate for the case W is
greater than x, but not too much. In other words, we might think about the quantity E

{
(W − x)+

}
as a risk-free, first-level safety stock.

Positive risk is incurred whenever (W − x)+ > E
{

(W − x)+

}
. However, the newsvendor realizes

that not all values of the central deviation

CD (x,W ) , (W − x)+ − E
{

(W − x)+

}
(44)

are of equal importance, or equal severity. In other words, the newsvendor’s risk is variable relative
to the value of CD (x,W ). Under the reasonable assumption that positive risk should be increasing
as a function of the deviation CD (x,W ), the newsvendor’s realization translates naturally into a
variable and increasing rate of change of the risk, relative to the values of the deviation. In particular,
whenever CD (x,W ) > 0, the newsvendor identifies the following risk-incurring regions of increasing
severity:

1) CD (x,W ) ∈ (0, t1 > 0]. In this case, unmet demand is higher than what the newsvendor ex-
pects, but its deviation from their expectation is no higher than a fixed threshold t1. The value
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E
{

(W − x)+

}
+ t1 corresponds to the maximum partially unplanned or unexpected produc-

tion quantity that the newsvendor may be able to produce today, potentially using presently
unallocated resources. We might think about the threshold t1 as a risk-incurring, second-level
safety stock.

2) CD (x,W ) ∈ (t1, t2 > t1]. Here, the deviation of the unmet demand from the newsvendor’s
expectation is exceeds t1, but is no higher than another fixed threshold t2. The value t2 − t1
corresponds to the maximum quantity of newspapers that the newsvendor cannot produce
in-house today, but may ask a nearby vendor to produce for them. Of course, such events
should incur higher and more severely increasing risk, since the newsvendor essentially borrows
resources from the nearby vendor. We might call t2 as the borrowing threshold.

3) CD (x,W ) ∈ (t2,∞). This constitutes an event of “total disaster,” in which it is impossible
for the newsvendor to compensate for unmet market demand. When CD (x,W ) > t2, unmet
demand is so high that it cannot be met even if the newsvendor borrows the maximum amount
of resources from some nearby newsvendor. This might have severe consequences for the
newsvendor, since they either might be in debt, or even lose their professional credibility, or
both.

Although potentially simplified, a narrative such as the above is reasonable and quite realistic. Of
course, what is important for us in the context of this paper, is the fact that the characteristics of
the relatively complex risk dynamics discussed above can be succinctly captured by an appropriately
shaped risk regularizer, as proposed and analyzed herein. As a simplest example, we may define a
piecewise linear risk regularizer Rnv : R→ R as

Rnv (x) ,


0, if x ≤ 0

ψ1x, if 0 < x ≤ KU t1

ψ2x+ (ψ1 − ψ2)KU t1, if KU t1 < x ≤ KU t2

x+ (ψ2 − 1)KU t2 + (ψ1 − ψ2)KU t1, if x > KU t2

, (45)

where the risk slopes ψ1 ≥ 0 and ψ2 ≥ 0 are chosen such that ψ1 ≤ ψ2 ≤ 1. Of course, R may be
rewritten as

Rnv (x) ≡ ψ1x1
[
0,K

U
t1

) (x) +
(
ψ2x+ (ψ1 − ψ2)KU t1

)
1[
K

U
t1,K

U
t2

) (x)

+
(
x+ (ψ2 − 1)KU t2 + (ψ1 − ψ2)KU t1

)
1[
K

U
t2,∞

) (x) , (46)

for all x ∈ R, and may be conveniently thought as a generalization of the positive part function of
the upper-semideviation dispersion measure. Equivalently, the risk regularizer Rnv may be defined
as an antiderivative of the cdf FnvY : R → [0, 1] corresponding to some random variable Y : Ω → R
in Z∞, and defined as

FnvY (x) , ψ11
[
0,K

U
t1

) (x) + ψ21
[
K

U
t1,K

U
t2

) (x) + 1[
K

U
t2,∞

) (x) , x ∈ R, (47)

as suggested by Theorem 2. The cdf FnvY expresses precisely the rate of increase of the risk incurred
at each x ∈ R, where x may be thought of as the central deviation of the quantity whose risk is
assessed by the risk regularizer Rnv; in the newsvendor’s case, this quantity should be the noisy
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economic consequence due to unmet demand, i.e., KU (W − x)+, also justifying the multiplication of
thresholds t1 and t2 with the unit costKU in (45). Essentially, FnvY admits an intuitive interpretation,
and can be utilized in order to actually design Rnv, as well; also see Theorem 2.

If the newsvendor chooses the risk slopes ψ1 and ψ2 such that ψ1 < ψ2 < 1 (only they know
how set specific appropriate values), the quantity Rnv

(
KUCD (x,W )

)
(for a fixed and feasible

x ∈ X ) captures the dynamic behavior of the risk incurred by the central deviation CD (x,W ) when
taking different values in R+, as described above. Essentially, Rnv may be regarded as a nonlinear
weighting function acting on KUCD (x,W ), whose shape has been carefully designed in order to
reflect the newsvendor’s particular context.

Now, the newsvendor is interested in utilizingRnv
(
KUCD (·,W )

)
for decision making purposes.

Since, for each x ∈ X , Rnv
(
KUCD (·,W )

)
depends pointwise on the random market demand W ,

which is unobservable when the newsvendor decides their production plan, it is most reasonable to
consider the Lp-norm of Rnv

(
KUCD (·,W )

)
, for some prespecified p ∈ [1,∞), as a measure of

magnitude. Of course, lower values for such deterministic term are preferred. In order to effectively
manage their risk during decision making, the newsvendor proceeds by adding the Lp-norm of

Rnv
(
KUCD (·,W )

)
as a penalty term to their original, risk-neutral objective, leading to the risk-

averse stochastic program

minimize
x

KPx+ E
{
KU (W − x)+

}
+ c

∥∥∥Rnv (KU (W − x)+− E
{
KU (W − x)+

})∥∥∥
Lp

subject to P
(
KH (x−W )+ > h

)
≤ α

x ≥ 0

, (48)

where, in general, c ≥ 0 denotes the corresponding penalty tradeoff multiplier. It is then easy to see
that the objective of problem (48) constitutes a mean-semideviation model. Indeed, by equivalently
rewriting Rnv

(
KUCD (·,W )

)
as

Rnv
(
KUCD (x,W )

)
≡ Rnv

(
KPx+KU (W − x)+ − E

{
KPx+KU (W − x)+

})
≡ Rnv (F (x,W )− E {F (x,W )}) , ∀x ∈ X , (49)

problem (48) may be equivalently restated as

minimize
x

E {F (x,W )}+ c ‖Rnv (F (x,W )− E {F (x,W )})‖Lp
subject to x ∈ X

. (50)

Apparently, the objective of problem (50) is a mean-semideviation risk measure. Of course, whenever
c ∈ [0, 1], (50) (and thus, (48), as well) constitutes a convex, risk-averse stochastic program, precisely
of the form considered in this paper.

To empirically demonstrate the effectiveness of the risk-averse newsvendor problem (50), we have
conducted numerical simulations concerning the following three cases: Initial problem (29) (risk
neutral), risk-averse problem (50), and risk-averse of the form (50), but with Rnv being replaced by
(·)+, resulting to the mean-upper-semideviation risk measure. In all simulations, the random market
demand W follows a Rayleigh distribution, and all necessary expectations present in each objective
have been approximated utilizing 5 · 106 demand realizations, sampled independently. The precise
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Figure 3.2: Top: Objective as a function of the production decision, for each of the following three
cases: Risk neutral (problem (29)), risk-averse of the form (50), and risk-averse of the form (50), but
with Rnv being replaced by (·)+. Middle: Unmet demand realizations as a function of the market
cycle, for each of the three cases. Bottom: Combined monetary cost of production plus unmet
demand realizations as a function of the market cycle, for each of the three cases.
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values for the scale of the aforementioned distribution and for all the rest of parameters involved in
problem (50) are shown in the title of Fig. 3.2 (top), respectively.

From Fig. 3.2 (top), we observe that the optimal production decision obtained by solving (50) is
distinctly different from the respective solutions obtained by solving both the risk neutral problem
(29), and the risk-averse problem employing the mean-upper-semideviation risk measure (all opti-
mal solutions are represented by appropriately colored dots in Fig. 3.2 (top)). In particular, the
solution of (50) lies somewhere near the midpoint of the respective solutions of the remaining two
aforementioned problems. Therefore, we may conclude that the solution of (50) constitutes a less
conservative risk-averse production decision, compared to the case of the mean-upper-semideviation
risk measure, which essentially presumes that all risk-incurring events are of equal operational sever-
ity for the newsvendor. Equivalently, the mean-semideviation model utilized in (50) constitutes a
less conservative risk-averse objective compared to that involving the mean-upper-semideviation risk
measure (which, of course, is itself a mean-semideviation model induced by the trivial risk regularizer
(·)+). As it can be readily observed in Fig. 3.2 (middle & bottom), the less conservative character
of problem (50) translates directly to the statistical behavior of the realized unmet demand, and
that of the combined cost due to production and unmet demand. This is obviously expected in this
example, and is due to the simple structure to the original newsvendor problem we started with.

4 The MESSAGEp Algorithm

This section is devoted to the introduction and detailed analysis of the MESSAGEp algorithm. As
also stated in Section 1, the MESSAGEp algorithm is a parameterized (relative to the choice of R)
parallel version of the general purpose T -SCGD algorithm [Yang et al., 2018]. Both the algorithm
and analysis presented in this work are new; as compared to [Yang et al., 2018], we propose a
significantly milder set of problem assumptions, which, nonetheless, result in asymptotic guarantees
of at least the same quality, and more.

Before proceeding, let us restate the stochastic program under study. Formally, for fixed p ∈
[1,∞), we are interested in the convex optimization problem

minimize
x

E {F (x,W )}+ c ‖R (F (x,W )− E {F (x,W )})‖Lp
subject to x ∈ X

, (51)

where, for every x ∈ X , the convex real-valued random cost F (x,W (·)) ≡ F̃ (x, ·) is in Zq, the set
of feasible decisions X ⊆ RN is closed and convex, the risk related penalty multiplier is denoted by
c ≥ 0, and where R : R → R constitutes any risk regularizer of choice. Recall that we implicitly
assume that q and p are compatible according to Proposition 3. Also, based on our definitions, the
objective is identified as either of the functions ρ (F (·,W )) ≡ ρRp (F (·,W ) ; c) and φF̃ , where the
choices of ρ-related quantities p, c, R are assumed to be fixed and made in advance; as such, they
will not be explicitly referred to in our notation. Additionally, in the following, we assume that
c ∈ [0, 1], so that, by Corollary 1, (51) constitutes a convex problem.

In the following, we first discuss the reformulation of the objective of (51) in a convenient
compositional form, key to the development of any compositional algorithm whatsoever. Second, we
discuss the technical reasons that motivate the consideration of a compositional SSD-type algorithm
for solving (51), as well as differentiability of its objective. Then, we present the MESSAGEp

algorithm, along with some of its key characteristics.
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The section proceeds with the asymptotic analysis of the MESSAGEp algorithm. First, our
structural assumptions are presented and their main implications are discussed. Second, pathwise
convergence of the MESSAGEp algorithm is established, in a strong technical sense. Our proof
follows the somewhat standard “almost-supermartingale approach”, also adopted in [Wang et al.,
2017, Yang et al., 2018]. Third, we present a detailed convergence rate analysis of the MESSAGEp

algorithm, where we systematically develop all the results advertised in Section 1, along with relevant
discussions.

Finally, the generality of our structural framework against that utilized in [Yang et al., 2018]
is also clearly demonstrated, rigorously showing that the class of mean-semideviation programs
supported herein is strictly larger than the respective class of problems supported within [Wang
et al., 2017, Yang et al., 2018]. This result concludes our discussion related to the consistency of the
MESSAGEp algorithm, and justifies our effort.

4.1 Mean-Semideviations in Compositional Form

Because we will be interested in determining the structure of the subdifferential of the objective
of (51), φF̃ , it is convenient to express φF̃ in compositional form, similar to the general approach
adopted in [Wang et al., 2017, Yang et al., 2018]. To do this, let us define the expectation functions
% : R+ → R, gF̃ : RN × R→ R+ and hF̃ : RN → RN × R as

% (x) , x1/p, x > 0, (52)

gF̃ (x, y) , E {(R (F (x,W )− y))p} and (53)

hF̃ (x) , [x E {F (x,W )}] , (54)

for every admissible choice of F and PW . Then, φF̃ may be alternatively expressed as

φF̃ (x) ≡ E {F (x,W )}+ c%
(
gF̃
(
hF̃ (x)

))
, x ∈ X . (55)

We observe that the functional composition term on the RHS of (55) coincides with the dispersion
measure in the objective of (51), simply rewritten as a composition of real-valued and, of course,
deterministic, functions. In the special case where p ≡ 1, (55) becomes

φF̃ (x) ≡ E {F (x,W )}+ cgF̃
(
hF̃ (x)

)
, x ∈ X . (56)

Also, it is trivial to see that, if p ≡ 1, then, by defining another function g̊F̃ : RN × R→ R as

g̊F̃ (x, y) , y + cE {R (F (x,W )− y)} , (57)

we may as well write
φF̃ (x) ≡ g̊F̃

(
hF̃ (x)

)
, x ∈ X , (58)

which is exactly the type of problem considered in [Wang et al., 2017], except for the fact that, here,
it is formulated under weaker assumptions. See Section 4.3 for details.

The difference between (56) and (55) is subtle. As we will see later on, based on our assumptions,
the structure of any SSD-type optimization algorithm suitable for handling objectives of the form
of (55) (and, thus, (51)) for p ∈ (1,∞) is inherently more complicated, compared to the case of the
slightly simpler objective resulting by setting p ≡ 1.
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Remark 4. Note that, alternatively, we could reexpress φF̃ in the compositional form outlined in
([Wang et al., 2017], Supplemental Materials, Section H.4, or [Yang et al., 2018], Section 4). In
particular, if we define the expectation functions %̂ : R × R+ → R, ĝF̃ : RN × R → R × R+ and

ĥ
F̃

: RN → RN × R as

%̂ (x, y) , x+ cy1/p, y > 0, (59)

ĝF̃ (x, y) , [y E {(R (F (x,W )− y))p}] and (60)

ĥ
F̃

(x) , [x E {F (x,W )}] , (61)

then φF̃ may be written as

φF̃ (x) = %̂

(
ĝF̃
(
ĥ
F̃

(x)

))
, ∀x ∈ X . (62)

Of course, the compositional representation (62) is equivalent to (55). For our purposes, though,
(55) is perfectly sufficient and, additionally, it is cleaner and somewhat more compact. �

4.2 Algorithm Motivation and Differentiability of φF̃

As a result of the discussion above, the original problem (4) can be equivalently written as

minimize
x

E {F (x,W )}+ c%
(
gF̃
(
hF̃ (x)

))
subject to x ∈ X

. (63)

Exploiting the assumed convexity of φF̃ on X , and given that we are interested in solving (63), one
would most reasonably hope for a SSD-type algorithm, whose gradient evaluation policy follows a
path of the stochastic differential equation

xn+1 = ΠX

{
xn − γn

[
∇̃
n+1

φF̃ (xn)
]}

, n ∈ N, (64)

where x0 ∈ X is arbitrarily chosen, {γn > 0}n∈N is an appropriately chosen stepsize sequence,

and
{
∇̃
n
φF̃
}
n∈N+

denotes a sequence of stochastic subgradients, that is, a sequence of RN -valued,

appropriately measurable random functions on RN × Ω, such that

E
{
∇̃
n
φF̃ (x)

}
≡ E

{
∇̃
n
φF̃ (x, ·)

}
∈ ∂φF̃ (x) , ∀ (n,x) ∈ N+ ×X , (65)

where we recall that the compact-valued multifunction ∂φF̃ : RN ⇒ RN constitutes the subdiffer-
ential associated with the convex function φF̃ .

We are now interested in the structural characterization of ∂φF̃ . However, even though φF̃ is
convex, a computationally useful characterization of its subdifferential is highly nontrivial; this is
mainly due to the fact that, although any mean-semideviation risk measure is convex-monotone (as
long as c ∈ [0, 1]), the corresponding dispersion measure can be only guaranteed to be convex. This
implies that composition of the latter with a convex random function on RN (such as F ) does not
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yield a convex function on RN . Unfortunately, common rules from subdifferential calculus, such
as addition and composition, which are essential in order to tractably determine the structure of
the multifunction ∂φF̃ , are rather complicated for nonconvex functions (see, e.g., Chapter 10 in
[Rockafellar and Wets, 2004]), not only conceptually, but most importantly, from a computational
point of view, as well. Fortunately, the problem simplifies considerably if we impose some mild
regularity requirements on the structure of the random cost function F , thus avoiding unnecessary
technical complications.

Assumption 3. The random function F possesses the following properties:

P1 For every x ∈ X , there exists a measurable set Dx ⊆ Ω, with P (Dx) ≡ 1, such that, for
all ω ∈ Dx, the random function F (·,W (ω)) is differentiable at x. In other words, F is
differentiable at each x ∈ X , almost everywhere relative to the base measure P.

P2 Let A be the countable Borel nullset of points where the risk regularizer R is nondifferentiable.
For every x ∈ X , there exists an event Nx ⊆ Ω, with P (Nx) ≡ 1, such that, for all ω ∈ Nx,
F (x,W (ω))− E {F (x,W )} /∈ A. In other words, for every x ∈ X , it is true that

P (F (x,W )− E {F (x,W )} /∈ A) ≡ 1. (66)

In addition to Properties P1 and P2, it is technically necessary to make the following basic
assumption, concerning the random subdifferential multifunction of F , relative to x.

Assumption 4. There exists a jointly B
(
RN
)
⊗B

(
RM

)
-measurable selection of the closed-valued

multifunction ∂F (·, •) : RN × RM ⇒ RN , say ∇F (·, •) : RN × RM → RN ; this is provided by the
SO, at each n ∈ N, given current iterate xn ∈ RN and IID process realization w ∈ RM .

Assumption 4 is important, because it allows us to integrate ∇F on RN × RM , relative to any
qualifying Borel measure, provided such an integral is well defined. This is extremely useful, in case
both arguments x andW are random elements. Hereafter, Assumption 4 will be considered implicitly
true; although it has to be verified case-by-case, it is almost always true in practice. Utilizing both
properties P1 and P2, the following result may be formulated; it will then be utilized in the design
of SSD-type algorithms, specialized for the convex problem (51).

Lemma 1. (Differentiability of φF̃ ) Consider the convex function φF̃ . Let Assumption 3 be in
effect, and suppose that R is not identically zero everywhere on R. Also, if p ∈ (1,∞), and with

κR , sup {x ∈ R |R (x) ≡ 0} ∈ [−∞,∞) , (67)

suppose that
P (F (x,W )− E {F (x,W )} ≤ κR) < 1, ∀x ∈ X . (68)

Then φF̃ is differentiable everywhere on X , and its gradient ∇φF̃ : RN → RN may be expressed as

∇φF̃ (x) ≡ E {∇F (x,W )}+ c∇hF̃ (x)∇gF̃
(
hF̃ (x)

)
∇%
(
gF̃
(
hF̃ (x)

))
, ∀x ∈ X , (69)
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where the derivative ∇% : R+ → R, Jacobian ∇hF̃ : RN → RN×(N+1) and gradient ∇gF̃ : RN+1 →
RN+1 are given by the expectation functions

∇% (x) ≡

1, x ≥ 0, if p ≡ 1
1

p
x(1−p)/p, x > 0, if p ∈ (1,∞)

, (70)

∇hF̃ (x) ≡ E


IN ∇F (x,W )

 and (71)

∇gF̃ (x, y) ≡ E

p (R (F (x,W )− y))p−1∇R (F (x,W )− y)

 ∇F (x,W )

− 1


 , (72)

respectively, for every (x, y) ∈ {(x, y) ∈ X × R| y ≡ E {F (x,W )}} , GraphX (E {F (·,W )}).

Proof of Lemma 1. See Section 7.2 (Appendix). �

Remark 5. Note that, in Lemma 1, we have explicitly assumed that the risk regularizer R is not
identically zero everywhere on R. If it is, (4) reduces to the standard, risk neutral stochastic program
of minimizing the expectation of a convex random function over a closed convex set, well-studied in
the literature of stochastic approximation. �

Remark 6. We would also like to comment on the potential restrictiveness of condition (68). Suppose
that κR ≤ 0. This essentially means that the risk regularizer R always positively penalizes events
for which F (x,W ) > E {F (x,W )}. In such a case, (68) will be true if, for every x ∈ X ,

P (F (x,W )− E {F (x,W )} ≤ 0) < 1. (73)

It is then a standard exercise to show that, for every x ∈ X , (73) is true if and only if

P (F (x,W ) ≡ E {F (x,W )}) < 1. (74)

This means that, if κR ≤ 0, (68) translates to a truly mild condition on the structure of F (·,W ),
namely, that, for every feasible decision x ∈ X , the cost F (x,W ) cannot be equal to a constant,
almost everywhere relative to P. In other words, for every x ∈ X , F (x,W ) has to be a nontrivial
random variable. Of course, it is not hard to satisfy such a condition in practice. �

Lemma 1 establishes that, under Assumption 3 (properties P1 and P2) and, if p ∈ (1,∞),
under condition (68), the subdifferential of φF̃ is a singleton, and provides an explicit representation
of the gradient vector ∇φF̃ .

Of course, in the original version of the SSD algorithm, one would require the availability of a
stochastic subgradient sequence in order to perform the usual SSD update step. However, Lemma 1
reveals that, under our base assumptions, such a stochastic subgradient process is far from obvious
to obtain, mainly due to the functional form of ∇φF̃ . In particular, by inspection of (69) in Lemma
1, it is easy to see that ∇φF̃ exhibits itself compositional structure, consisting of products of nested
expectation functions. This fact implies that it is generally not possible to generate a stochastic
gradient in a single sampling step, thus leading naturally to the idea of developing a compositional
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stochastic subgradient algorithm (see, for instance, [Wang et al., 2017]). In such an algorithm, the
respective stochastic gradient step would be implemented in a hierarchical fashion at every iteration,
starting from the “deepest” Stochastic Approximation (SA) level, to the “shallowest” (in most cases,
a biased procedure); see Section 4.3 for details.

Exploiting Assumptions 1, 2 and 3, and to efficiently exploit the special compositional structure
of ∇φF̃ , we will be particularly interested in sampled approximations of ∇φF̃ , which are constructed
using sampled realizations of the random cost F (·,W ), as well as some corresponding subgradient,
∇F (·,W ). From now on, we will implicitly assume that the risk regularizer R is not identically
zero everywhere on R. Otherwise, the problem reduces to its risk-neutral counterpart.

4.3 The MESSAGEp Algorithm

For any value of p ∈ [1,∞), the proposed MESSAGEp algorithm consists of three SA levels, as
naturally suggested by the structure of∇φF̃ , and assumes the existence of two mutually independent,
IID information streams, W n

1 , W
n
2 , accessible by the SO (see Assumption 1), as follows. In the

first (shallowest) SA level, at iteration n ∈ N, and given current, random iterates xn ≡ xn (ω) ∈ X
and yn ≡ yn (ω) ∈ R, the SO provides the samples F

(
xn,W n+1

1

)
and ∇F

(
xn,W n+1

1

)
and the

smoothing update
yn+1 = (1− βn) yn + βnF

(
xn,W n+1

1

)
(75)

is performed, where {βn > 0}n∈N is an appropriately chosen stepsize sequence. In the second SA

level, the SO provides the samples F
(
xn,W n+1

2

)
and ∇F

(
xn,W n+1

2

)
, and another smoothing

update

zn+1 =

{
1, if p = 1

(1− γn) zn + γn

(
R
(
F
(
xn,W n+1

2

)
−yn

))p
, if p > 1

(76)

is performed, with {γn > 0}n∈N being another appropriately chosen stepsize sequence. Of course,
in the simpler case where p ≡ 1, no actual update is performed. In the third (deepest) SA level,
with no additional information by the SO, and by defining the stochastic gradient approximation
∇̂n+1φF̃ : RN+2 × Ω→ R as

∇̂n+1φF̃ (xn, yn, zn) ≡ ∇̂n+1φF̃ (xn, yn, zn, ·)

, ∇F
(
xn,W n+1

2

)
+c (zn)

(1−p)/p

IN ∇F(xn,W n+1
1

)
×

 ∇F
(
xn,W n+1

2

)
− 1

∇R(F(xn,W n+1
2

)
− yn

)(
R
(
F
(
xn,W n+1

2

)
− yn

))p−1

≡ ∇F
(
xn,W n+1

2

)
+c (zn)

(1−p)/p
(
∇F

(
xn,W n+1

2

)
−∇F

(
xn,W n+1

1

))
×∇R

(
F
(
xn,W n+1

2

)
− yn

)(
R
(
F
(
xn,W n+1

2

)
− yn

))p−1

, ∇F
(
xn,W n+1

2

)
+ c∆n+1 (xn, yn, zn) , (77)
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Algorithm 1 MESSAGEp

Input: Initial points x0 ∈ X , y0 ∈ R, z0 ∈ R, stepsize sequences {αn}n∈N, {βn}n∈N, {γn}n∈N,
IID sequences {W n

1}n∈N, {W
n
2}n∈N and penalty coefficient c ∈ [0, 1].

Output: Sequence {xn}n∈N.
1: for n = 0, 1, 2, . . . do
2: Obtain F

(
xn,W n+1

1

)
and ∇F

(
xn,W n+1

1

)
from the SO.

3: Update (First SA Level):

yn+1 = (1− βn) yn + βnF
(
xn,W n+1

1

)
4: Obtain F

(
xn,W n+1

2

)
and ∇F

(
xn,W n+1

2

)
from the SO.

5: Update (Second SA Level):

zn+1 =

{
1, if p = 1

(1− γn) zn + γn

(
R
(
F
(
xn,W n+1

2

)
−yn

))p
, if p > 1

6: Define auxiliary variables:

δ = F
(
xn,W n+1

2

)
− yn

δ∇ = ∇F
(
xn,W n+1

2

)
−∇F

(
xn,W n+1

1

)
∆ = δ∇∇R (δ) (R (δ))p−1 (zn)

(1−p)/p

7: Update (Third SA Level):

xn+1 = ΠX

{
xn − αn

(
∇F

(
xn,W n+1

2

)
+ c∆

)}
8: end for

we update the current estimate xn as

xn+1≡ΠX

{
xn−αn∇̂

n+1φF̃ (xn, yn, zn)
}

≡ΠX

{
xn−αn

(
∇F

(
xn,W n+1

2

)
+c∆n+1 (xn, yn, zn)

)}
, (78)

where {αn ≥ 0}n∈N is another appropriately chosen stepsize sequence. In the above, ∆n : RN+2 ×
Ω → R, n ∈ N+ (a random function of the involved quantities) may be viewed as a risk-averse
correction sequence, weighted by the penalty multiplier c ∈ [0, 1]. Again, if p ≡ 1, the correction ∆n

is simplified accordingly as

∆n+1 (xn, yn, zn) ≡ ∆n+1 (xn, yn, 1)

≡ ∇R
(
F
(
xn,W n+1

2

)
− yn

)(
∇F

(
xn,W n+1

2

)
−∇F

(
xn,W n+1

1

))
, (79)
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for all n ∈ N. As we will shortly see, whether p ≡ 1 or p > 1 has nontrivial consequences in regard
to the asymptotic performance of the MESSAGEp algorithm. The iterative optimization procedure
outlined above (the MESSAGEp algorithm) is summarized in Algorithm 1.

Exploiting Assumption 4, it is then easy to verify that, for every (n,x) ∈ N+ ×X ,

E
{
∇̂nφF̃ (x,E {F (x,W )} ,E {(R (F (x,W )−E {F (x,W )}))p})

}
≡ ∇φF̃ (x) . (80)

This implies that while the random function ∇̂nφF̃ (·, yn, zn) does not necessarily yield a stochastic
gradient of φF̃ , for n ∈ N, ∇̂nφF̃ (·,E {F (·,W )} ,E {(R (F (·,W )−E {F (·,W )}))p}) does; this is a
key fact in the analysis of general purpose compositional stochastic subgradient algorithms [Yang
et al., 2018].

Remark 7. In relation to the brief discussion above, it might be helpful to observe that, by the
substitution rule for conditional expectations (again due to Assumption 4), it is also true that

E
{
∇̂n+1φF̃ (xn, E{F (x,W )}|x≡xn , E{(R (F (x,W )−E{F (x,W )}))p}|x≡xn)

∣∣∣xn}≡∇φF̃ (xn), (81)

almost everywhere relative to P and, apparently, this is not the case for the conditional expectation of
∇̂n+1φF̃ (xn, yn, zn) relative to σ {xn}, or even σ

{
x0,x1, . . . ,xn

}
. In this sense, we might say that

the hierarchical approximate gradient sampling scheme described by (75) and (78) is conditionally
biased. �

4.4 Convergence Analysis

Next, we present and discuss the proposed structural framework, explicitly demonstrating its gen-
erality and flexibility. Subsequently, we proceed with a detailed presentation of our main technical
results, concerning the asymptotic behavior of the MESSAGEp algorithm; we study pathwise con-
vergence first, and rate of convergence second.

4.4.1 Structural Assumptions

Hereafter, for some measurable set ΩE ⊆ Ω, such that P (ΩE) ≡ 1, let us define the quantities

ml , inf
x∈X

inf
ω∈ΩE

F (x,W (ω)) and mh , sup
x∈X

sup
ω∈ΩE

F (x,W (ω)) , (82)

and let RF̃ , cl {(ml −mh,mh −ml)}, where the closure is taken relative to the usual Euclidean
topology on R. The structural problem assumptions considered in this paper follow.

Assumption 5. For P ∈ [2,∞] and Q ∈ [P/(P−1),∞]a, F (·,W ) and R satisfy the conditions:

C1 For chosen random subgradient ∇F (·,W ), there exists a number G <∞, such that

sup
x∈X

[
E
{
‖∇F (x,W )‖P2

}]1/P
, sup

x∈X

∥∥∥‖∇F (x,W )‖2
∥∥∥
LP
≤ G.

In other words, the `2-norm of ∇F (·,W ) has bounded LP -norm, uniformly over X .
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C2 There exists a number V <∞, such that

sup
x∈X

V {F (x,W )} , sup
x∈X

[
E
{

(F (x,W ))2
}
− (E {F (x,W )})2

]
≤ V,

that is, uniformly on X , F (·,W ) is of bounded variance.

C3 For chosen subderivative ∇R, there exists another number D <∞, such thatb

sup
x∈X

∥∥∥∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣∥∥∥
LQ
≤ D |y1 − y2| ,

for all (y1, y2) ∈ [cl {(ml,mh)}]2. This is a Lipschitz-in-Expectation type of condition.

C4 Whenever p > 1, it is true that −∞ < ml ≤ mh <∞, and

0 < ε , R (ml −mh) ≤ R (mh −ml) , E <∞.

In other words, the risk regularizer R is strictly positively uniformly bounded within RF̃ .
aAs usual, the case P ≡ ∞ is understood as a limit.
bNote that, by convexity, it always is true that ∇ (R (z))

p ≡ p (R (z))
p−1∇R (z).

Let us briefly comment on the various conditions of Assumption 5. First, conditions C1 and
C3 reveal a probably fundamental trade-off between the size of the `2-norm of the random sub-
gradient ∇F (x,W ), which may be thought of as a measure of the expansiveness of the random
cost function F (·,W ), and the size of the slope of the random subgradient p (R (F (·,W )− •))p−1

×∇R (F (·,W )− •), which is directly related to the smoothness of the risk regularizer R, as well
as the smoothness of the distribution of F (·,W ). This trade-off is explicitly demonstrated through
the following simple result, which presents at least three ways of increasing generality, for ensuring
validity of condition C3, for certain values of the exponent pair (P,Q).

Proposition 4. (Ensuring Validity of C3) Assume that, whenever p > 1, condition C4 is
satisfied. Then, the following statements are true:

1) Suppose that the p-th power of R is differentiable on RF̃ , and that there is DR,p < ∞, such
that

|∇ (R (y1))p −∇ (R (y1))p| ≤ DR,p |y1 − y2| , ∀ (y1, y2) ∈
[
RF̃
]2
. (83)

Then, condition C3 is satisfied for every choice of Q ∈ [P/(P−1),∞], for every choice of
P ∈ [2,∞].

2) Choose ∇R ≡ R′+, and if F (·)
W : R → [0, 1] denotes the cdf of F (·,W ), suppose that there

exists D
F̃
<∞, such that

sup
x∈X

∣∣Fx
W (y1)− Fx

W (y2)
∣∣ ≤ D

F̃
|y1 − y2| , ∀ (y1, y2) ∈ [cl {(ml,mh)}]2 . (84)

Then, condition C3 is satisfied for Q ≡ 1 (implying that P ≡ ∞), for every value of p ∈ [1,∞).
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3) More generally, whenever p ≡ 1 and for any choice of R, take ∇R ≡ R′+, let Y : Ω→ R be the
random variable associated with R, as in Theorem 2, and suppose that F (·)

W is continuous ev-
erywhere on R (not necessarily Lipschitz). Then, condition C3 is satisfied for Q ≡ 1 (implying
that P ≡ ∞) if and only if there exists some DF̃

R <∞, such that the Lipschitz-in-Expectation
condition

sup
x∈X

∫ ∣∣Fx
W (y + y1)− Fx

W (y + y2)
∣∣ dPY (y) ≤ DF̃

R |y1 − y2| , (85)

is satisfied, for all (y1, y2) ∈ [cl {(ml,mh)}]2. If p > 1, (85) is only sufficient for condition C3.

Proof of Proposition 4. See Section 7.4 (Appendix). �

Proposition 4 demonstrates the versatility of condition C3, mainly relative to the choice of Q.
First, observe that if P ≡ 2, then Q can be anything in [2,∞]. If, for instance, we choose Q ≡ ∞ (this
is most easiest to verify from a technical viewpoint; also see Remark 8 below), the almost Lipschitz
assumption imposed by condition C3 on the p-th power of the chosen risk regularizer R might be
severely restrictive, depending on the value p. More specifically, a model satisfying (or required to
satisfy) Assumption 5 for Q ≡ ∞ (in which case C3 is almost equivalent to the respective condition
in the first part of Proposition 4) might not allow for risk regularizers exhibiting corner points. Let
us illustrate this by means of an example. Let p ≡ 1, choose R to be the upper-semideviation
regularizer, that is, R ≡ (·)+ ≡ max {·, 0}, and consider the linear objective

F (x,W ) ,W T
1 x+W ∈ R, (86)

whereW ,
[
W T

1 W
]T

, whereW 1 : Ω→ RN constitutes an absolutely continuous random element

almost everywhere in [0, 1]N , E {W 1} ≡ µ, and W ∼ N (0, 1). Then, we are interested in the
nonlinear (convex), risk-averse stochastic program

inf
x∈X

µTx+ cE
{(
W T

1 x− µ
Tx+W

)
+

}
, (87)

for some closed, convex set X . Note that, for every choice of X (compact or not), it is true that
ml ≡ −∞ and mh ≡ +∞, since the random element W is unbounded. Thus, cl {(ml,mh)} ≡ R.
Consequently, for this problem, condition C3 (for Q ≡ ∞) demands the existence of a number
D <∞, such that2

sup
x∈X

esssup
ω∈Ω

∣∣1{F (x,W (ω))≥y1} − 1{F (x,W (ω))≥y2}
∣∣ ≤ D |y1 − y2| , (88)

for all (y1, y2) ∈ R2, or by definition of the essential supremum ([Bogachev, 2007], p. 250),

sup
x∈X

inf
F3Ω

′⊆Ω:P(Ω
′)≡1

sup
ω∈Ω

′

∣∣1{F (x,W (ω))≥y1} − 1{F (x,W (ω))≥y2}
∣∣ ≤ D |y1 − y2| , (89)

for all (y1, y2) ∈ R2. It is relatively easy to show that it is actually impossible for (89) to hold
uniformly in (y1, y2) ∈ R2, for any possible choice of D > 0. Indeed, for simplicity, consider the
symmetric “antidiagonal” case where y1 ≡ −y2 , z > 0. Then, for each fixed x ∈ X , it is true that∣∣1{F (x,W (ω))≥y1} − 1{F (x,W (ω))≥y2}

∣∣ ≡ ∣∣1{F (x,W (ω))≥z} − 1{F (x,W (ω))≥−z}
∣∣

2In this case, we simply take ∇R (·) ≡ ∇ (·)+ ≡ 1{(·)≥0}
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= 1{F (x,W (ω))∈[−z,z)}

≡ 1Ω
z
x

(ω) , ∀ω ∈ Ω, (90)

where the event Ωz
x ∈ F is defined as

Ωz
x , {ω ∈ Ω |F (x,W (ω)) ∈ [−z, z)} , ∀ (x, z) ∈ X × R++, (91)

and where we emphasize that, due to our assumptions, it holds that P (Ωz
x) > 0, for every choice of

(x, z) ∈ X × R++. Consequently, for an arbitrary event Ω′ ⊆ Ω such that P
(
Ω′
)
≡ 1, we have

sup
ω∈Ω

′

∣∣1{F (x,W (ω))≥y1} − 1{F (x,W (ω))≥y2}
∣∣ ≡ sup

ω∈Ω
′
1Ω

z
x

(ω)

≡ max

 sup
ω∈Ω

′∩Ω
z
x

1Ω
z
x

(ω) , sup
ω∈Ω

′∩(Ω
z
x)

c
1Ω

z
x

(ω)

 = max {1, 0} ≡ 1, ∀ (x, z) ∈ X × R++, (92)

which implies in particular that, unless z ≥ (2D)−1,

1 ≡ sup
x∈X

esssup
ω∈Ω

∣∣1{F (x,W (ω))≥y1} − 1{F (x,W (ω))≥y2}
∣∣ > D |y1 − y2| ≡ 2Dz, (93)

for any fixed and finite choice of D > 0, thus immediately disproving uniform validity of (89). Of
course, the apparent impossibility of (89) may be seen as a consequence of the fact that, for any
fixed z ∈ R, the function 1{z≥y} is discontinuous when y ∈ R.

For this example, it is also possible to show that condition C3 is impossible to hold for Q ≡ 2,
as well, which corresponds to the smallest choice of Q, when P ≡ 2. Indeed, in this case, condition
C3 demands the existence of a number D <∞, such that

sup
x∈X

∥∥∥∣∣1{F (x,W )≥y1} − 1{F (x,W )≥y2}
∣∣∥∥∥
L2
≤ D |y1 − y2| , (94)

for all (y1, y2) ∈ R2. For every x ∈ X and for every pair (y1, y2) ∈ R2, we may write

E
{(
1{F (x,W )≥y1} − 1{F (x,W )≥y2}

)2}
≡ E

{
1{F (x,W )≥y1} + 1{F (x,W )≥y2} − 21{F (x,W )≥y1}1{F (x,W )≥y2}

}
= P (F (x,W ) ≥ y1) + P (F (x,W ) ≥ y2)− 2P (F (x,W ) ≥ max {y1, y2})
= P (F (x,W ) ≥ min {y1, y2})− P (F (x,W ) ≥ max {y1, y2})
≡ |P (F (x,W ) ≥ y1)− P (F (x,W ) ≥ y2)|
≡
∣∣Fx

W (y1)− Fx
W (y2)

∣∣ . (95)

Therefore, for (94) to hold, it must be true that, for every x ∈ X and for every (y1, y2) ∈ R2,√∣∣Fx
W (y1)− Fx

W (y2)
∣∣ ≤ D |y1 − y2| ⇐⇒

∣∣Fx
W (y1)− Fx

W (y2)
∣∣ ≤ D2 |y1 − y2|

2 , (96)

implying that F (·)
W must be constant on R. This is absurd, however, since F (·)

W is a proper cdf.
On the other hand, the second and third parts of Proposition 4 show that, if the random variable

‖∇F (·,W )‖2 can be afforded to be uniformly in Z∞ (for Q ≡ 1), the choice of the risk regularizer
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R may be completely unconstrained, as long as the Borel pushforward of F (·,W ) is uniformly well
behaved, in the sense of either (84), or, more generally, (85). Of course, this constitutes a major
improvement compared to the case where Q ≡ ∞, discussed above, at least in regard to the shape
of R. For example, in our previous example, it is also true that

∇F (x,W ) = ∇F (x,W ) = W 1 ∈ [0, 1]N , P − a.e., (97)

and, hence,
sup
x∈X

∥∥∥‖∇F (x,W )‖2
∥∥∥
L∞
≡ sup

x∈X
esssup
ω∈Ω

‖W 1‖2 ≤
√
N. (98)

In this case, condition C3 is loosened to

sup
x∈X

∥∥∥∣∣1{F (x,W )≥y1} − 1{F (x,W )≥y2}
∣∣∥∥∥
L1
≤ D |y1 − y2| , (99)

for all (y1, y2) ∈ R2, whose validity may now be verified for appropriate choices of the distribution
PW , as Proposition 4 suggests.

We have seen that the price to be paid for choosing a lower value for the exponent Q is a
potentially stronger requirement on the size of the random subgradient ∇F (·,W ) (condition C1).
Still, such a requirement is relatively easy to satisfy for many interesting models, other than our
particular example discussed above. For example, in the extreme case where P ≡ ∞, C1 will indeed
be satisfied in cases involving a compact feasible set X and a Borel measure PW with bounded
essential support (recall that, by assumption, the domain of F (·,W ) is the whole Euclidean space
RN ).
Remark 8. We would like to emphasize that, for P ≡ ∞, a sometimes more easily verifiable sufficient
condition for C1 is the existence of an event Ω

F̃
⊆ Ω, with P

(
Ω
F̃

)
≡ 1, as well as a number G <∞

such that
sup
x∈X

sup
ω∈Ω

F̃

‖∇F (x,W (ω))‖2 ≡ sup
ω∈Ω

F̃

sup
x∈X
‖∇F (x,W (ω))‖2 ≤ G. (100)

This follows by definition of the essential supremum ([Bogachev, 2007], p. 250); indeed, we may
write

sup
x∈X

∥∥∥ ‖∇F (x,W )‖2
∥∥∥
L∞
, sup

x∈X
esssup
ω∈Ω

‖∇F (x,W (ω))‖2

, sup
x∈X

inf
F3Ω

′⊆Ω:P(Ω
′)≡1

sup
ω∈Ω

′
‖∇F (x,W (ω))‖2

≤ sup
x∈X

sup
ω∈Ω̃

‖∇F (x,W (ω))‖2 , (101)

where Ω̃ ⊆ Ω is any measurable set in F , such that P
(

Ω̃
)
≡ 1. This technical fact was previously

utilized in (98). �

Let us also comment on the hard boundedness condition C4, which is assumed only when p >
1. Although condition C4 may not impose significant restrictions on the choice of R, it does
require that F (·,W ) is uniformly bounded on X , almost everywhere on Ω relative to P. This
assumption is explicitly made in condition C4 mainly for analytical tractability, and is due to
the slightly more complicated form of the gradient ∇φF̃ (see Lemma 1). Without C4, asymptotic
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analysis of the MESSAGEp algorithm becomes unnecessarily and uninsightfully complicated, when p
is chosen greater than one. Still, uniform boundedness of F (·,W ) may be verified in many common
optimization settings, such as when X is compact and PW has bounded essential support (see also
the discussion above), or in case F is itself uniformly bounded on X × RM .

Another important structural reason for imposing condition C4 is that for every choice of p > 1,
we have implicitly assumed that F (·,W ) ∈ Zq, for some q ≥ p, so that problem (51) is well defined.
Thus, choosing larger values for p implies that F (·,W ) behaves more or less like a bounded function
(pointwise on X ). Therefore, condition C4 may be regarded as an easy way of exploiting this
approximate boundedness, compared to the imposition of integral Lq-norm constraints, which are
more complicated and harder to handle.

Nevertheless, there are important cases where the choice of R might make it very difficult to
guarantee that ε ≡ R (ml −mh) > 0, even if ml and mh are finite. For example, simply take
R (·) ≡ (·)+ (note that ml < mh, by definition); in this case, ε ≡ 0. Fortunately, there is a simple,
cheap-trick remedy to this technical issue. For fixed slack η > 0, consider a function Rη : R → R,
defined as

Rη (x) , R (x) + η, ∀x ∈ R. (102)

It can be readily verified thatRη is a valid risk regularizer and may be seen as a variable, lower-biased
version of R. Then, problem (51) is replaced by its slack-adjusted version

minimize
x

E {F (x,W )}+ c
∥∥Rη (F (x,W )− E {F (x,W )})

∥∥
Lp

subject to x ∈ X
, (103)

and that it is always true that ε ≥ η, satisfying the respective requirement of condition C4. One
then hopes that, as η → 0, (103) becomes increasingly equivalent to (51). The size of η should be
chosen so that a certain trade-off between algorithmic stability and closeness to the original problem
(51) is satisfied.

Lastly, condition C2 constitutes a common restriction of SSD-type algorithms (either composi-
tional or not) [Kushner and Yin, 2003, Shapiro et al., 2014, Wang et al., 2017, Yang et al., 2018],
and will also be made here, without any further comment.

Next, we will exploit Assumption 5, in order to show asymptotic consistency for Algorithm 1, in
a strong, pathwise sense.

4.4.2 Pathwise Convergence of the MESSAGEp Algorithm

Proving convergence of Algorithm 1 will be based on the so-called T -Level Almost-Supermartingale
Convergence Lemma by Yang, Wang & Fang [Yang et al., 2018], presented below. This is an
inductive generalization of the Coupled Almost-Supermartingale Convergence Lemma by Wang &
Bertsekas [Wang and Bertsekas, 2016, Wang et al., 2017], which in turn generalizes the well-known
Almost-Supermartingale Convergence Lemma by Robbins and Siegmund [Robbins and Siegmund,
1971].

Lemma 2. (T -Level Almost-Supermartingale Convergence Lemma [Yang et al., 2018])
Let {ξn}n∈N, {η

n}n∈N, {ζ
n,j}n∈N, {θ

n,j}n∈N, for j ∈ N+
T−1, {u

n,j}n∈N and {µn,j}n∈N, for j ∈ N+
T ,

be nonnegative random sequences on (Ω,F ), and consider the global filtration {G n ⊆ F}n∈N, where

G n , σ
{
ξi, ηi, ζi,j , θi,j , ui,j , µi,j , ui,T , µi,T , ∀j ∈ N+

T−1 and ∀i ∈ Nn
}
. (104)
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Let cj > 0, j ∈ N+
T and suppose that

E
{
ξn+1

∣∣∣G n
}
≤ (1 + ηn) ξn − un,T +

∑
j∈N+

T−1

cjθ
n,jζn,j + µn,T and (105)

E
{
ζn+1,j

∣∣∣G n
}
≤
(

1− θn,j
)
ζn,j − un,j + µn,j , ∀j ∈ N+

T−1, (106)

for all n ∈ N, and that
∑

n∈N η
n < ∞,

∑
n∈N µ

n,j < ∞, for all j ∈ N+
T , all almost everywhere

relative to P. Then, there exist random variables ξ∗ and ζj∗, j ∈ N+
T−1 such that ξn −→

n→∞
ξ∗ and

ζn,j −→
n→∞

ζj∗, for all j ∈ N+
T−1 and

∑
n∈N u

n,j < ∞, for all j ∈ N+
T ,
∑

n∈N θ
n,jζn,j < ∞, for all

j ∈ N+
T−1, all almost everywhere relative to P.

Our proof roadmap is similar to that presented in, say, [Wang et al., 2017, Yang et al., 2018], and
is somewhat standard in the literature of stochastic approximation, in general. Before proceeding,
let us define the filtration {Dn ⊆ F}n∈N, generated from all data observed so far, by both the user
and the SO, with each sub σ-algebra Dn given by

Dn , σ
{
x0, . . . ,xn, y0, . . . , yn, z0, . . . , zn,W 0

1, . . . ,W
n
1 ,W

0
2, . . . ,W

n
2

}
, ∀n ∈ N. (107)

Also, for the sake of clarity, if C is some sub σ-algebra of F , we will employ the more compact
notation E {· |C } ≡ EC {·}, especially for larger expressions involving conditional expectations.

Our first basic result follows, characterizing the rate of decay of the squared L2-norm of the
inter-iteration error xn+1 − xn, relative to Dn.

Lemma 3. (Deep SA Level: Iterate Increment Growth) Let Assumption 5 be in effect and
define a constant

Rp ≡


1, if p ≡ 1(
E
ε

)p−1

if p > 1
. (108)

Then, for every p ∈ [1,∞), the process {xn}n∈N generated by the MESSAGEp algorithm satisfies

O
(
α2
n

)
≡ ED

n

{∥∥∥xn+1 − xn
∥∥∥2

2

}
≤ α2

n

(
2cRp + 1

)2
G2, ∀n ∈ N, (109)

almost everywhere relative to P.

Proof of Lemma 3. See Section 7.5 (Appendix). �

Exploiting Lemma 3, one may also prove the following result, which will be useful later in our
analysis. The proof is omitted, since it is essentially provided in ([Wang et al., 2017], Supplementary
Material, Section G.1).

Lemma 4. (Iterate Increment Summability) Let Assumption 5 be in effect. Also, consider a
sequence {δn > 0}n∈N, such that

∑
n∈N α

2
nδ
−1
n <∞. Then, the iterate process {xn}n∈N generated by

the MESSAGEp algorithm satisfies∑
n∈N

δ−1
n ED

n

{∥∥∥xn+1−xn
∥∥∥2

2

}
<∞, (110)

almost everywhere relative to P.
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Let us now consider Borel measurable functions S F̃ : X → R, DF̃ : X × R→ R+ and DF̃ : R→
R+, defined as3

S F̃ (x) , E
{
F
(
x,W ′)} , (111)

DF̃ (x, y) , E
{(
R
(
F
(
x,W ′)−y))p} and (112)

DF̃ (x) , E
{(
R
(
F
(
x,W ′)−S F̃ (x)

))p}
. (113)

where the random element W ′ : Ω → RM is distributed according to the Borel measure PW , and
is arbitrarily taken as independent of the whole filtration {Dn}n∈N. For instance, for each n ∈ N,
W ′ may be substituted by the information stream W n+1

2 , which is by assumption statistically
independent of the sub σ-algebra σ {Dn}. The main purpose of the auxiliary expectation functions
S F̃ and DF̃ is convenience.

Utilizing S F̃ , the behavior of the running approximation error yn+1−S F̃
(
xn+1

)
may be analyzed

in a similar manner as the respective quantity of Lemma 3. The relevant result follows.

Lemma 5. (First SA Level: Error Growth) Let Assumption 5 be in effect. Also, let βn ∈ (0, 1],
for all n ∈ N. Then, the composite process {(xn, yn)}n∈N generated by the MESSAGEp algorithm
satisfies

ED
n

{∣∣∣yn+1−S F̃
(
xn+1

)∣∣∣2}≤ (1−βn)
∣∣∣yn−S F̃ (xn)

∣∣∣2+β−1
n 2G2ED

n

{∥∥∥xn+1−xn
∥∥∥2

2

}
+β2

n2V, (114)

for all n ∈ N, almost everywhere relative to P.

Proof of Theorem 5. See Section 7.6 (Appendix). �

At this point, let us make the following additional assumption, related with the initial conditions
of the first and second SA levels of the MESSAGEp algorithm.

Assumption 6. (Initial Values) Whenever p > 1, y0, β0 and z0, γ0 are chosen such that{
either y0 ∈ [ml,mh] , or β0 ≡ 1

either z0 ∈ [εp, Ep] , or γ0 ≡ 1
. (115)

It is trivial to see that Assumption 6 can always be satisfied, one way or another. However,
choosing β0 , 1 and γ0 , 1 might be advantageous in practice, especially for cases where specific
values of the constants ml,mh, ε, E are unknown. In our analysis, Assumption 6 will help us guar-
antee uniform boundedness of the iterates {yn}n∈N and {zn}n∈N of the first and second SA levels
of the MESSAGEp algorithm, respectively, whenever the semideviation order is chosen greater than
unity, that is, p > 1 (see Lemma 11 in Section 7.3 (Appendix)).

Now, similarly to Lemma 5, the growth of the running approximation error zn − DF̃ (xn, yn)
may be characterized as follows.

3Without any risk of confusion, we use the same name DF̃ to refer to the two very similar functions (112) and
(113). The two functions will be distinguished by their different number of arguments.
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Lemma 6. (Second SA Level: Error Growth) Let Assumptions 5 and 6 be in effect. Also,
choose p > 1, and let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Then, the composite process
{(xn, yn, zn)}n∈N generated by the MESSAGEp algorithm satisfies

ED
n

{∣∣∣zn+1 −DF̃
(
xn+1, yn+1

)∣∣∣2} ≤ (1− γn)
∣∣∣zn −DF̃ (xn, yn)

∣∣∣2
+ γ−1

n 16G2E2p−2p2ED
n

{∥∥∥xn+1 − xn
∥∥∥2

2

}
+ β2

nγ
−1
n 4E2p−2p2 (mh −ml)

2 + γ2
n2E2p, (116)

for all n ∈ N, almost everywhere relative to P.

Proof of Theorem 6. See Section 7.7 (Appendix). �

Let x∗ ∈ X be an optimal solution of problem (51), assuming such solution exists. We now

characterize the evolution of optimality error xn+1−x∗, showing that the quantity
∥∥∥xn+1−x∗

∥∥∥2

2
is

an almost-supermartingale nonnegative sequence, of the form (105) in Lemma 2.

Lemma 7. (Third SA Level: Optimality Error Growth) Let Assumptions 5 and 6 be in effect,
let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N, and define the constant

Bp ,


D, if p ≡ 1(

1 + Ep−1p
)

max

{(
1

ε

)p−1

D, (p− 1)
Ep−1

ε2p−1

}
, if p > 1

<∞. (117)

Also, suppose that X ∗ , arg minx∈Xφ
F̃ (x) 6= ∅ and consider any x∗ ∈ X ∗. Then, the composite

process {(xn, yn, zn)}n∈N generated by the MESSAGEp algorithm satisfies

ED
n

{∥∥∥xn+1−x∗
∥∥∥2

2

}
≤

(
1+4B2

pG
2c2

(
α2
n

βn
+
α2
n

γn
1{p>1}

))∥∥xn−x∗∥∥2

2
+α2

n

(
2cRp+1

)2
G2−2αn

(
φF̃ (xn)−φF̃∗

)
+ βn

∣∣∣yn−S F̃ (xn)
∣∣∣2+γn

∣∣∣zn −DF̃ (xn, yn)
∣∣∣2 1{p>1}, (118)

for all n ∈ N, almost everywhere relative to P, where φF̃∗ ∈ R is the optimal value of problem (51).

Proof of Lemma 7. See Section 7.8 (Appendix). �

Under the proposed Assumption 5, pathwise convergence of the MESSAGEp algorithm is estab-
lished next, in a rather strong sense. Here, we directly invoke Lemma 2.

Theorem 3. (Pathwise Convergence of the MESSAGEp Algorithm) Let Assumptions 5 and
6 be in effect, and let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Whenever p ≡ 1, suppose that

∑
n∈N

αn ≡ ∞ and
∑
n∈N

α2
n + β2

n +
α2
n

βn
<∞, (119)
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whereas, whenever p > 1, suppose additionally that∑
n∈N

γ2
n +

α2
n

γn
+
β2
n

γn
<∞. (120)

Then, as long as X ∗ ≡ arg minx∈Xφ
F̃ (x) 6= ∅, the process {xn}n∈N generated by the MESSAGEp

algorithm satisfies4

P
({
ω ∈ Ω

∣∣∣∃x∗ (ω) ∈ X ∗ such that xn (ω) −→
n→∞

x∗ (ω)
})
≡ 1. (121)

In other words, almost everywhere relative to P, the process {xn}n∈N converges to a random point
in the set of optimal solutions of (63).

Proof of Theorem 3. We present the proof assuming that p > 1. If p ≡ 1, the proof is almost the
same, albeit simpler. Under the assumptions of the theorem, Lemmata 5, 4 and 6 imply that∑

n∈N
β−1
n 2G2ED

n

{∥∥∥xn+1−xn
∥∥∥2

2

}
<∞, (122)

and ∑
n∈N

γ−1
n 16G2E2p−2p2ED

n

{∥∥∥xn+1−xn
∥∥∥2

2

}
<∞, (123)

whereas it is also true that∑
n∈N

α2
n

(
2cRp + 1

)2
G2 <∞,

∑
n∈N

β2
nγ
−1
n 4E2p−2p2 (mh −ml)

2 <∞, (124)∑
n∈N

β2
nV <∞ and

∑
n∈N

γ2
n2E2p <∞, (125)

as well. Therefore, we may apply Lemma 2 with the identifications

ξn ≡
∥∥xn−x∗∥∥2

2
, ηn ≡ 4B2

pG
2c2

(
α2
n

βn
+
α2
n

γn

)
, un,3 ≡ 2αn

(
φF̃ (xn)−φF̃∗

)
ζn,1 ≡

∣∣∣yn−S F̃ (xn)
∣∣∣2 , θn,1 ≡ βn, un,1 ≡ 0,

ζn,2 ≡
∣∣∣zn −DF̃ (xn, yn)

∣∣∣2 , θn,2 ≡ γn, un,2 ≡ 0,

µn,3 ≡ α2
n

(
2cRp + 1

)2
G2

µn,1 ≡ β−1
n 2G2ED

n

{∥∥∥xn+1 − xn
∥∥∥2

2

}
+β2

nV,

µn,2 ≡ γ−1
n 16G2E2p−2p2ED

n

{∥∥∥xn+1 − xn
∥∥∥2

2

}
+ β2

nγ
−1
n 4E2p−2p2 (mh −ml)

2 + γ2
n2E2p,

G n ≡ Dn,

and with c1 ≡ c2 ≡ 1. The rest of the proof is identical to ([Wang et al., 2017], Proof of Theorem 1
(a)), or ([Yang et al., 2018], Proof of Theorem 2.1 (a) & Proof of Lemma 2.5). �

4Note that (121) is meaningful only if the involved outcome set is an event, that is, F -measurable. In our case,
such measurability follows by completeness of the base space (Ω,F ,P).
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Remark 9. Note that, in both ([Wang et al., 2017], Theorem 1) and ([Yang et al., 2018], Theorem
2.1), in addition to the stepsize requirements of Theorem 3, it is assumed that∑

n∈N+

βn ≡ ∞ and
∑
n∈N+

γn ≡ ∞, (126)

as well. To be best of our knowledge, however, although they do not hurt, none of the aforemen-
tioned (non)summability conditions are necessary in order to guarantee pathwise convergence of the
MESSAGEp algorithm, and the same is true for the general purpose SCGD algorithm of [Wang
et al., 2017] (see statement and proof of Theorem 1 in [Wang et al., 2017]) and T -SCGD algorithm
of [Yang et al., 2018] (see statement and proof of Theorem 2.1 in [Yang et al., 2018]). �

Besides the classical Robbins-Monro (RM) conditions [Robbins and Monro, 1951] on the step-
size sequence {αn}n∈N+ and the square summability conditions on {βn}n∈N+and {γn}n∈N+ , and in
agreement with ([Yang et al., 2018], Theorem 2.1), Theorem 3 demands that

∑
n∈N+

α2
n

βn
<∞,

∑
n∈N+

α2
n

γn
<∞ and

∑
n∈N+

β2
n

γn
<∞. (127)

These stepsize requirements imposed by Theorem 3 might seem quite complicated. Nevertheless,
there are lots of viable choices for the sequences {αn}n∈N+ , {βn}n∈N+and {γn}n∈N+ , satisfying the
conditions in (127).

Let us present a simple, but instructive example. Take, for every n ∈ N+,

αn ≡
1

nτ1
, βn ≡

1

nτ2
and γn ≡

1

nτ3
, (128)

for some τj ∈ (0.5, 1], for j ∈ {1, 2, 3}. In such a case, the RM conditions are automatically satisfied
for all three stepsizes since∑

n∈N+

1

nτj
≡ ∞ and

∑
n∈N+

1

n2τj
<∞, j ∈ {1, 2, 3} . (129)

We would like to see how we may choose τj , j ∈ {1, 2, 3}, such that the summability conditions in
(127) are satisfied. First, we demand that

∑
n∈N+

α2
n

βn
≡
∑
n∈N+

1

n2τ1−τ2
<∞, (130)

which equivalently yields
1 < 2τ1 − τ2 ⇐⇒ τ2 < 2τ1 − 1. (131)

Also, for the preceding inequality to yield a feasible lower bound for τ2, it must be true that

2τ1 − 1 >
1

2
⇐⇒ τ1 >

3

4
. (132)

Consequently, we obtain the conditions

3

4
< τ1 ≤ 1 and

1

2
< τ2 < 2τ1 − 1. (133)
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Figure 4.1: A graphical representation of the stepsize constraint set (138)-(140).

Similarly, for the second condition of (127)

∑
n∈N+

α2
n

γn
≡
∑
n∈N+

1

n2τ1−τ3
<∞, (134)

we obtain the constraints
3

4
< τ1 ≤ 1 and

1

2
< τ3 < 2τ1 − 1. (135)

Now, for the third condition of (127), we demand that

∑
n∈N+

β2
n

γn
≡
∑
n∈N+

1

n2τ2−τ3
<∞, (136)

yielding
3

4
< τ2 ≤ 1 and

1

2
< τ3 < 2τ2 − 1. (137)

Of course, the linear constraints (133), (135) and (137) need to be satisfied simultaneously, yielding
the feasible set

7

8
<τ1 ≤ 1, (138)

3

4
<τ2 < 2τ1 − 1 and (139)

1

2
<τ3 < 2τ2 − 1. (140)

We observe that there are lots of feasible choices for the exponents τ1, τ2 and τ3. For example,
one may take τ1 ≡ 1, τ2 ≡ 0.9 and τ3 ≡ 0.7. A graphical representation of the constraint set
(138)-(140) is shown in Fig. 4.1.
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4.4.3 Convergence Rates of the MESSAGEp Algorithm

We study two standard settings considered in the literature, namely, that involving a convex risk-
averse objective, matching all problem assumptions we have made so far, and that involving a strongly
convex objective, which, as we will shortly see, results naturally by imposing strong convexity directly
on the random cost function under consideration.

For the convex case, we employ iterate smoothing, and we provide detailed bounds on the L1

objective suboptimality rate of the MESSAGEp algorithm. The proof of our result follows directly,
by appealing to the respective results developed recently in [Yang et al., 2018].

For the strongly convex case, we develop completely new, detailed and much stronger results on
the squared-L2 solution suboptimality rate of the MESSAGEp algorithm, which provide substantial
improvement over the convex case, and are much more comparable to rates achievable in risk-neutral
stochastic optimization.

The next basic technical result will be useful in our analysis.

Lemma 8. (Approximation Error Boundedness) Let Assumptions 5, 6 be in effect, and let
βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Also, whenever p ≡ 1, suppose that supn∈N α

2
n/β

2
n <∞. Then,

it is true that
sup
n∈N

E
{∣∣∣yn − S F̃ (xn)

∣∣∣2} <∞, (141)

for every choice of p ∈ [1,∞), and

sup
n∈N

E
{∣∣∣zn −DF̃ (xn, yn)

∣∣∣2} <∞, (142)

for every choice of p ∈ (1,∞).

Proof of Lemma 8. If p > 1, the conclusion of the lemma is trivial, due to Assumptions 5 and 6,
which imply that the involved quantities yn, S F̃ (·), zn and DF̃ (·, ·) are uniformly bounded almost
everywhere relative to P (see Lemma 11 in the Appendix (Section 7)).

For the remaining case where p ≡ 1, if supn∈N α
2
nβ
−2
n <∞, we may use simple induction exactly

as in ([Yang et al., 2018], Appendix, Proof of Lemma 2.3 (c)), exploiting the recursion (114) in
Lemma (5), respectively. �

4.4.3.1 Convex Random Cost with Iterate Smoothing For the convex case, we consider
iterate smoothing on top of the MESSAGEp algorithm, by defining averages

x̂n ,
1

dn/2e
∑

i∈Nn−dn/2e
n

x̂i, n ∈ N+, (143)

exactly as in [Wang et al., 2017, Yang et al., 2018]. Under this setting, the next result character-
izes the L1 objective suboptimality rate of the MESSAGEp algorithm, when iterate smoothing is
employed, for any choice of the semideviation order p.

Theorem 4. (Rate | Convex Case | Subharmonic Stepsizes) Let Assumptions 5, 6 be in
effect, and let the stepsize sequences {αn}n∈N, {βn}n∈N and {γn}n∈N follow the subharmonic rules

αn ,
1

nτ1
, βn ,

1

nτ2
, if p ≡ 1 with 1/2 ≤ τ2 < τ1 < 1

αn ,
1

nτ1
, βn ,

1

nτ2
, γn ,

1

nτ3
, if p > 1 with 1/2 ≤ τ3 < τ2 < τ1 < 1

, ∀n ∈ N+, (144)
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with initial values α0 ≡ β0 ≡ γ0 ≡ 1. Additionally, suppose that supn∈N E
{∥∥xn−x∗∥∥2

2

}
< ∞,

where x∗ ∈ X ∗. Then, for every n ∈ N+, it is true that∥∥∥φF̃ (x̂n)−φF̃∗
∥∥∥
L1
≡ E

{
φF̃ (x̂n)−φF̃∗

}
≤

{
K1n

−min{1−τ1,τ1−τ2,2τ2−τ1}, if p ≡ 1

Kpn
−min{1−τ1,τ1−τ2,2τ3−τ1,2τ2−τ1−τ3}, if p > 1

, (145)

where 0 < Kp <∞, p ∈ [1,∞) is a problem dependent constant. In particular, if, for some ε ∈ [0, 1),
δ ∈ (0, 1) and ζ ∈ (0, 1) such that δ ≥ ζ,

τ1 ≡
3 + ε

4
and τ2 ≡

1 + δε

2
, if p ≡ 1

τ1 ≡
7 + ε

8
, τ2 ≡

3 + δε

4
and τ3 ≡

1 + ζε

2
, if p > 1

, (146)

then the MESSAGEp algorithm satisfies

E
{
φF̃ (x̂n)−φF̃∗

}
≤ Kpn

−(1−ε)/(41{p>1}+4), (147)

for every n ∈ N+, for each fixed ε.

Proof of Theorem 4. Although the MESSAGEp algorithm is different from the T -SCGD algorithm
of [Yang et al., 2018], the proof of Theorem 4 shares essentially the same structure with ([Yang
et al., 2018], Proof of Theorem 2.2). In a nutshell, except for its native assumptions, the proof
exploits Lemma 8 discussed above, the bound of Lemma 3 and the recursions of Lemmata 5, 6, and
7, developed in Section 4.4.2, the convexity of φF̃ , as well as the stepsize exponent constraint set
(138)-(140). The details of the proof are omitted, and the reader is referred to [Yang et al., 2018],
instead. �

It should be mentioned that, for ε > 0, the exponents of the subharmonic stepsizes of Theorem 4
simultaneously satisfy the constraints (138)-(140), as discussed in Section 4.4.2, which are sufficient
for guaranteeing convergence of the MESSAGEp algorithm in the pathwise sense. Therefore, for
ε > 0, the MESSAGEp algorithm attains a L1 objective suboptimality rate of order arbitrarily close
to O(n−1/(41{p>1}+4)), while provably exhibiting pathwise stability, as well. On the other hand, if
ε ≡ 0, then the MESSAGEp algorithm attains a rate of order precisely O(n−1/(41{p>1}+4)), that is,
O(n−1/4), if p ≡ 1, and O(n−1/4), if p > 1, but pathwise convergence is not guaranteed, at least
based on the results presented in Section 4.4.2.

Indeed, the conclusions of Theorem 4, which match the respective rate results previously devel-
oped for the general purpose T -SCGD algorithm in [Yang et al., 2018], are somewhat disappointing,
especially when p > 1. However, we should note that this result assumes nothing but mere convexity
on the random cost F (·,W ) and, therefore, on φF̃ , as well. This means that Theorem 4 is valid for
any problematic or pathological choice of the potentially nonsmooth cost F (·,W ), as long as it is
convex (and of course satisfying any additional regularity assumptions made throughout this work).

Nonetheless, the situation changes dramatically if we strengthen our assumptions on the convex-
ity of φF̃ , which, as we will see shortly, can be guaranteed very naturally by in turn strengthening
the convexity of F (·,W ), as in classical risk-neutral stochastic optimization. This is the subject of
the next paragraph.
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4.4.3.2 Strongly Convex Random Cost Here, we assume that the risk-averse objective under
consideration, φF̃ , is σ-strongly convex, in the sense that there exists σ > 0, such that

φF̃ (x)− φF̃∗ ≥ σ
∥∥x− x∗∥∥2

2
, ∀x ∈ X , (148)

where x∗ ∈ X ∗, and X ∗ is singleton. Although condition (148) will turn out to be very central in
our analysis, is not very useful per se, unless we can show that it can be satisfied under reasonable
choices of the random cost F (·,W ), and the risk measure ρ, such that ρ (F (·,W )) ≡ φF̃ (·). In
other words, it is important to be able to satisfy condition (148) constructively within our problem
setting, starting from appropriate assumptions on its basic components (bottom-up).

In fact, it turns out that imposing σ-strong convexity on F (·,W ) in the usual sense that there
exists σ > 0, such that

F (·,w)− σ ‖·‖22 is convex, for all w ∈ RM , (149)

is all that is needed in order to guarantee condition (148) for the objective of our base problem, φF̃ .
This is a very simple, but important consequence of the fact that mean-semideviations are convex
risk measures (that is, convex, monotone and translation equivariant real-valued functionals on Zq).
The relevant results follow.

Proposition 5. (Strong Convexity of Risk-Function Compositions) Consider a real-valued
random function f : RN × Ω → R, as well as a real-valued risk measure ρ : Zq → R. Suppose that,
for every ω ∈ Ω, f (·, ω) is σ-strongly convex, and that ρ is convex. Then, the real-valued composite
function φf (·) ≡ ρ (f (·, •)) : RN → R is σ-strongly convex, as well.

Proof of Proposition 5. By σ-strong convexity of f (·, ω) for all ω ∈ Ω, it is true that f (·, ω)−σ ‖·‖22
is convex, for all ω ∈ Ω. But ρ is a convex-monotone risk measure and, thus, ρ

(
f (·, •)− σ ‖·‖22

)
is

also convex. Since, additionally, ρ is translation equivariant, it is true that, for every x ∈ RN ,

ρ
(
f (x, •)− σ ‖x‖22

)
≡ ρ (f (x, •))− σ ‖x‖22 ≡ φ

f (x)− σ ‖x‖22 , (150)

which, of course, implies that the function φf (·)− σ ‖·‖22 is convex. Enough said. �

For the special case of mean-semideviation models, Proposition 5 may be specialized accordingly,
as follows. The proof is trivial, and therefore is omitted.

Proposition 6. (Strong Convexity of φF̃ ) Fix p ∈ [1,∞) and choose any risk regularizer R :
R → R. Suppose that, for every w ∈ RM , F (·,w) is σ-strongly convex on X . Then, as long as
c ∈ [0, 1], the composite function φF̃ (·) ≡ ρ (F (·,W )) is σ-strongly convex on X , as well, and
satisfies condition (148).

Consequently, we see that strong convexity of F (·,W ) suffices for φF̃ being strongly convex, as
well. This fact is very important from an operational/practical point of view, because it implies that
guaranteeing strong convexity for a risk-averse problem is in principle no harder than guaranteeing
strong convexity for the respective risk-neutral problem when mean-semideviations, or, more gener-
ally, convex risk measures, are involved. In particular, Proposition 5 holds true for all coherent risk
measures, being also convex.
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What remains now is to quantitatively characterize the effect of strong convexity on the con-
vergence rates achieved by the MESSAGEp algorithm, and how those compare to the more general
convex case, briefly analyzed in Section 4.4.3.1.

Our first result is a parametric “rate generator”, which provides general stepsize conditions, under
which the optimality and approximation errors of all three levels of the MESSAGEp algorithm may
be jointly combined into a recursive inequality, resembling the respective recursions arising in the
rate analysis of standard, risk-neutral SSD algorithms. This result is new, and builds upon some
basic ideas found in the earlier work of [Wang et al., 2017], concerning the rate of the general purpose
(2-level) SCGD algorithm developed therein.

Lemma 9. (Rate Generator | Strongly Convex Case) Let Assumptions 5, 6 be in effect, and
let βn ∈ (0, 1], γn ∈ (0, 1], for all n ∈ N. Also, suppose that φF̃ is σ-strongly convex, and that there
exists no ∈ N+, such that, for all n ∈ Nno , the following conditions hold simultaneously:

G1 σαn ≤
K − 1

K
min {βn−1, γn−1}, for some bounded constant K > 1.

G2 αn+1βn−1 ≤ αnβn and, likewise, αn+1γn−1 ≤ αnγn.

For nonnegative sequences {∆n
B}n∈N and {∆n

C}n∈N, consider the process

Jn , E
{∥∥xn − x∗∥∥2

2

}
+ ∆n−1

B E
{∣∣∣yn−1 − S F̃

(
xn−1

)∣∣∣2}
+ ∆n−1

C E
{∣∣∣zn−1 −DF̃

(
xn−1, yn−1

)∣∣∣2}1{p>1}, n ∈ N+. (151)

Then, {∆n
B}n∈N and {∆n

C}n∈N may be chosen such that

Jn+1 ≤ (1− σαn) Jn + Σ̃

(
σ2α2

n +
σ3αnα

2
n−1

β2
n−1

+ σαnβn−1

)

+ Σ̃

(
σ3αnα

2
n−1

γ2
n−1

+
σαnβ

2
n−1

γ2
n−1

+ σαnγn−1

)
1{p>1}, ∀n ∈ Nno , (152)

for some constant 0 < Σ̃ <∞. Additionally, under the assumptions of Lemma 8, and for the same
choices of {∆n

B}n∈N and {∆n
C}n∈N, it is true that sup

n∈N+ Jn <∞.

Proof of Lemma 9. See Section 7.10 (Appendix). �

Leveraging Lemma 9, along with a simple generalization of Chung’s Lemma (see Section 7.9
(Appendix)), we may characterize the convergence rates of the MESSAGEp algorithm in the strongly
convex case, in full and transparent technical detail. We start with the case where p > 1.

Theorem 5. (Rate | Strongly Convex Case | Subharmonic Stepsizes | p > 1) Let Assump-
tions 5 and 6 be in effect. Suppose that φF̃ is σ-strongly convex, and that the stepsize sequences
{αn}n∈N, {βn}n∈N and {γn}n∈N satisfy the subharmonic rules

αn ,
1

σn
, βn ,

1

nτ2
and γn ,

1

nτ3
, ∀n ∈ N+, (153)
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where 1/2 ≤ τ3 < τ2 < 1, and with initial values α0 ≡ β0 ≡ γ0 ≡ 1. Also, define the quantities

no (τ2) ≡

⌈
1

1− τ1/(τ2+1)
2

⌉
∈ N3 and R (τ2, τ3) ,

1

1−max {2− 2τ2, 2τ2 − 2τ3, τ3}
> 1. (154)

Then, for every n ∈ Nno(τ2), it is true that

E
{∥∥∥xn+1 − x∗

∥∥∥2

2

}
≤ Σ̂

no (τ2)

n
+ Σ̂

R (τ2, τ3)

n2 min{1−τ2,τ2−τ3}
, (155)

for some constant 0 < Σ̂ <∞. In particular, if, for some ε ∈ [0, 1) and δ ∈ (0, 1),

τ2 ≡
3 + ε

4
and τ3 ≡

1 + δε

2
, (156)

then the MESSAGEp algorithm satisfies

O
(
n−(1−ε)/2

)
≡ E

{∥∥∥xn+1 − x∗
∥∥∥2

2

}
≤

Σ̂

(
no (ε) +

2

1− ε

)
n(1−ε)/2 , (157)

for every n ∈ Nno(ε), for each fixed ε.

Proof of Theorem 5. See Section 7.11 (Appendix). �

The main conclusion of Theorem 5 is that, for fixed semideviation order p > 1 and for any choice
of the user-specified parameter ε ∈ [0, 1), the MESSAGEp algorithm achieves a squared-L2 solution
suboptimality rate of the order of O(n−(1−ε)/2) iterations. If, additionally, ε is chosen to be strictly
positive, that is, for ε > 0, pathwise convergence is simultaneously guaranteed, since the constraints
(138)-(140) of Section 4.4.2 are also satisfied. Similarly to the convex case, this completely novel
result establishes a convergence rate of order arbitrarily close to O(n−1/2) as ε→ 0, while ensuring
stable pathwise operation of the algorithm. Of course, when ε ≡ 0, the rate of O(n−1/2) iterations
is attained, but pathwise convergence of the algorithm is not guaranteed.

Setting aside the fact that rate quantification is different for the convex and strongly convex cases,
and by looking at the respective rate exponents, we observe that Theorem 5 provides a rate strictly
four (4) times faster than that provided by Theorem 4. Of course, this substantial improvement on
the rate of convergence of the MESSAGEp algorithm is made possible due to imposition of strong
convexity on the risk-averse objective φF̃ .

When p ≡ 1, we also have the following simpler result. As the proof is very similar to that of
Theorem 5, it is omitted.

Theorem 6. (Rate | Strongly Convex Case | Subharmonic Stepsizes | p ≡ 1) Let Assump-
tions 5 and 6 be in effect. Suppose that φF̃ is σ-strongly convex, and that the stepsize sequences
{αn}n∈N, {βn}n∈N follow the subharmonic rules

αn ,
1

σn
, and βn ,

1

nτ2
∀n ∈ N+, (158)
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where 1/2 < τ2 < 1, and with initial values α0 ≡ β0 ≡ 1. Choose no (τ2) as in Theorem 5, and define

R (τ2) ,
1

1−max {2− 2τ2, τ2}
> 1 (159)

Then, for every n ∈ Nno(τ2), it is true that

E
{∥∥∥xn+1 − x∗

∥∥∥2

2

}
≤ Σ (no (τ2) + R (τ2))

nmin{2−2τ2,τ2}
, (160)

for some constant 0 < Σ̂ < ∞. In particular, the exponent in the denominator is maximized at
τ∗2 ≡ 2/3, yielding a rate of the order of O(n−2/3).

In the structurally simpler case where p ≡ 1, the rate order improves to O(n−2/3), which is
sufficient for pathwise convergence as well, and matches existing results in compositional stochastic
optimization, developed earlier along the lines of [Wang et al., 2017]. Compared to the convex case
(Theorem 4), Theorem 6 provides a rate which is at most 8/3 ≈ 2.67 times faster. Note, however,
that whereas in the strongly convex case pathwise convergence is always guaranteed for the particular
selection of stepsizes, this does not happen in the convex case, which also involves the choice of ε.
This seems to be a unique feature of mean-semideviation problems of order p ≡ 1 (two SA levels),
since if p > 1 (three SA levels), the trade-off between achieving pathwise convergence and a fast rate
of convergence exists in both the convex and strongly convex cases.

4.5 The Choice of R: Comparison with Assumption 2.1 of [Yang et al., 2018]

We now present a detailed comparison between Assumption 5, which is proposed in this paper, and
Assumption 2.1 of [Yang et al., 2018], which is utilized for analyzing and proving convergence of
the general purpose T -SCGD algorithm, formulated therein. In the following, we rigorously show
that, as far as problem (51) is concerned, Assumption 5 imposes substantially weaker restrictions
on problem structure, compared with ([Yang et al., 2018], Assumption 2.1), therefore providing a
much broader structural framework for recursive, compositional SSD-type optimization of mean-
semideviation risk measures.

Recall from (58) that the objective of our base problem (51) may be equivalently represented in
the form considered in [Wang et al., 2017, Yang et al., 2018] as

φF̃ (x) ≡ %̂
(
ĝF̃
(
ĥ
F̃

(x)

))
, ∀x ∈ X , with (161)

%̂ (x, y) ≡ E
{
x+ cy1/p

}
≡ x+ cy1/p, (162)

ĝF̃ (x, y) ≡ E {[y (R (F (x,W )− y))p]}

, E
{
ĝF̃W (x, y)

}
and (163)

ĥ
F̃

(x) ≡ E {[x F (x,W )]}

, E
{
ĥ
F̃

W (x)

}
, x ∈ X . (164)

Via careful, but relatively straightforward comparison, it follows that, relative to problem (51),
([Yang et al., 2018], Assumption 2.1) translates into the following structural requirements, where
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the quantities ε and E are defined precisely as in condition C4 of Assumption 5. Recall that ε and E
characterize the essential range of R (F (·,W )− •) and the iterate process {zn}

n∈N+ , if z0 ∈ [εp, Ep]
(see Lemma 11). Here, though, we allow the possibility of ε and E attaining the values zero and
infinity, respectively, and we explicitly adopt the generalized definitions

ε , lim
x→ml−mh

R (x) and (165)

E , lim
x→mh−ml

R (x) , (166)

where ml ∈ [−∞,∞] and mh ∈ [−∞,∞], respecting the constraint ml ≤ mh (note that, by our
assumptions, ml and mh cannot be equal and infinite at the same time). Also, E is finite if and only
if both ml and mh are finite.

W1 The random functions ĝF̃W and ĥ
F̃

W are of uniformly bounded variance.

W2 Almost everywhere on Ω, ĝF̃W is differentiable everywhere on X×cl {(ml,mh)}. In other words,
it is true that

P
({
ω ∈ Ω

∣∣∣∇ĝF̃W (ω) exists for all X × cl {(ml,mh)}
})
≡ 1. (167)

W3 The squared induced operator `2-norms of the random subgradient ∇ĥ
F̃

W and the almost
everywhere existent random Jacobian function ∇ĝF̃W are uniformly bounded in expectation.

W4 The random Jacobian of ĝF̃W is uniformly Lipschitz on X × cl {(ml,mh)}, that is, there exists
some constant, say L <∞, such that∥∥∥∇ĝF̃W (x1, y1)−∇ĝF̃W (x2, y2)

∥∥∥
2
≤ L

√
‖x1 − x2‖

2
2 + |y1 − y2|

2, (168)

for all ([x1 y1] , [x2 y2]) ∈ [X × cl {(ml,mh)}]2, almost everywhere on Ω.

W5 The expectation function ĥ
F̃
is Lipschitz on X .

W6 The gradient ∇%̂ of the outer function %̂ is both uniformly bounded (relative to any `p-norm)
and Lipschitz on cl {(ml,mh)} × [εp, Ep].

Conditions W1−W6 match precisely ([Yang et al., 2018], Assumption 2.1), when the latter is applied
to the class of risk-averse problems considered in this paper. In our analysis, we will also impose the
following condition in addition to W1−W6, closely resembling condition C4 of Assumption 5.

W̃7 Whenever p > 1, it is true that E <∞.

Although condition W̃7 is not explicitly considered in [Yang et al., 2018], it is made here in order
to simplify and free the comparison with our proposed Assumption 5 from unnecessary technical
complications. In effect, considering condition W̃7 together with conditions W1 −W6 slightly
restricts the class of problems supported by the latter. Nonetheless, such restriction is by no means
that severe. On the other hand, imposing condition W̃7 provides great analytical flexibility; without
it, verification of conditions W1 and W3 within the framework of [Yang et al., 2018], referring in
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particular to ([Yang et al., 2018], Assumption 2.1 (iii) & (iv)), becomes rather problematic and
uninsightful, for reasons very similar to those justifying condition C4 as part of Assumption 5. The
usefulness of condition W̃7 in addition to conditions W1 −W6 in the framework of [Yang et al.,
2018] is clearly demonstrated in our discussion below.

Of course, condition W̃7 is trivially equivalent with almost half of condition C4 of Assumption
5; thus, no further comment is necessary. Amongst all remaining conditions W1−W6, conditions
W5 and W6 are the easiest to discuss and may be almost trivially shown to be automatically
satisfied by all problems considered in this paper. Between the latter, let us strategically consider
condition W6 first, which requires that the gradient function

∇%̂ (x, y) ≡

 1

c
1

p
y

1−p
p

 (169)

is uniformly bounded and Lipschitz on cl {(ml,mh)} × [εp, Ep]. If p > 1 (if not, the situation is
trivial), in order for ∇%̂ to be uniformly bounded, we of course need to verify that (any `p-norm is
fine)

sup
(x,y)∈cl{(ml,mh)}×[εp,Ep]

‖∇%̂ (x, y)‖2 ≡ sup
y∈[εp,Ep]

√
1 + c2 1

p2 y
2(1−p)

p

≡
√

1 + c2 1

p2 sup
y∈[εp,Ep]

y
2(1−p)

p <∞, (170)

which, due to the fact that (·)
2(1−p)

p is a hyperbola, is only possible if ε > 0, yielding

sup
y∈[εp,Ep]

y
2(1−p)

p =
1

ε2(p−1)
. (171)

By taking the Jacobian of ∇%̂, it can be easily shown that strict positivity of ε ensures that ∇%̂ is
Lipschitz on cl {(ml,mh)} × [εp, Ep], as well. Consequently, we see that condition W6 is implied by
condition C4 of Assumption 5. It is also relatively easy to show that condition W6 together with
W̃7 are in fact equivalent to C4. As far as condition W5 is concerned, this can be directly verified
exploiting Lipschitz continuity of the function E {F (·,W )} on X (see Lemma 10). In the following,
we examine the less obvious, remaining conditions W1−W4, in greater detail.

We start with condition W1. In order for ĝF̃W and ĥ
F̃

W to be of uniformly bounded variance, it
must be true that

sup
x∈X

sup
y∈cl{(ml,mh)}

E
{∥∥∥ĝF̃W (x, y)− ĝF̃ (x, y)

∥∥∥2

2

}
<∞ and (172)

sup
x∈X

E

{∥∥∥∥ĥF̃W (x)− ĥ
F̃

(x)

∥∥∥∥2

2

}
<∞, (173)

respectively. Let W ′ : Ω → RM be an independent copy of the information variable W . Then,
regarding ĝF̃W , we have, for every x ∈ X and for every y ∈ cl {(ml,mh)},

E
{∥∥∥ĝF̃W (x, y)− ĝF̃ (x, y)

∥∥∥2

2

}
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≡ E
{
‖[0 (R (F (x,W )− y))p − E {(R (F (x,W )− y))p}]‖22

}
≡ E

{
((R (F (x,W )− y))p − E {(R (F (x,W )− y))p})2

}
≡ E

{(
(R (F (x,W )− y))p − E

{(
R
(
F
(
x,W ′)− y))p∣∣∣W})2

}
≡ E

{(
E
{

(R (F (x,W )− y))p −
(
R
(
F
(
x,W ′)− y))p∣∣∣W})2

}
, (174)

which, by Jensen, yields

E
{∥∥∥ĝF̃W (x, y)− ĝF̃ (x, y)

∥∥∥2

2

}
≤ E

{∣∣∣(R (F (x,W )− y))p −
(
R
(
F
(
x,W ′)− y))p∣∣∣2} . (175)

If p ≡ 1, nonexpansiveness of R (condition S4) further implies that

E
{∥∥∥ĝF̃W (x, y)− ĝF̃ (x, y)

∥∥∥2

2

}
≤ E

{∣∣F (x,W )− F
(
x,W ′)∣∣2}

≡ E
{

(F (x,W ))2 +
(
F
(
x,W ′))2 − 2F (x,W )F

(
x,W ′)}

≡ 2V {F (x,W )} , (176)

for all x ∈ X and for all y ∈ cl {(ml,mh)}. For p > 1, Lemma 12 similarly implies that (recall that
we have assumed that condition W̃7 is true)

E
{∥∥∥ĝF̃W (x, y)− ĝF̃ (x, y)

∥∥∥2

2

}
≤ 2Ep−1pV {F (x,W )} , (177)

for all x ∈ X and for all y ∈ cl {(ml,mh)}. Consequently, F (·,W ) being uniformly in Z2 is sufficient,
so that ĝF̃W is also uniformly in Z2, as required. Now, note that, for every x ∈ X ,

E

{∥∥∥∥ĥF̃W (x)− ĥ
F̃

(x)

∥∥∥∥2

2

}
≡ E

{
(F (x,W )− E {F (x,W )})2

}
≡ V {F (x,W )} , (178)

and thus F (·,W ) being uniformly in Z2 is equivalent to ĥ
F̃

W being uniformly in Z2. Apparently, con-
dition W1 implies condition C2 of Assumption 5, which directly requires that F (·,W ) is uniformly
in Z2, in turn implying condition W1. Therefore, conditions C2 and W1 are equivalent.

Second, we examine the consequences of assuming everywhere differentiability of ĝF̃W primarily
on the smoothness on the risk regularizer R, but also that of the random cost function F (·,W ).
Suppose that there exists a measurable set Ω̂ ⊆ Ω, with P

(
Ω̂
)
≡ 1, such that, for all ω ∈ Ω̂, ĝF̃W (ω)

is differentiable everywhere on X × cl {(ml,mh)}, as in condition W2. Without loss of generality,
we can take Ω̂ ≡ ΩE . Then, for every ω ∈ Ω̂ and for every (x, y) ∈ X × cl {(ml,mh)}, and due
to convexity (see also Proof of Lemma 1 in Section 7.2), the (random) Jacobian of ĝF̃W may be
expressed as

∇ĝF̃W (x, y) =

[
0N ∇x [(R (F (x,W )− y))p]

1 ∇y [(R (F (x,W )− y))p]

]
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=

[
0N p (R (F (x,W )− y))p−1∇R (F (x,W )− y)∇F (x,W )

1 −p (R (F (x,W )− y))p−1∇R (F (x,W )− y)

]

≡

[
0N ∇ (R (z))p|z≡F (x,W )−y ×∇F (x,W )

1 − ∇ (R (z))p|z≡F (x,W )−y

]
, (179)

where we have assumed that, although ∇ĝF̃W exists, the convex functions F (·,W ) and R may not
be differentiable everywhere on X and RF̃ (the effective domain of R (F (·,W )− (•))), respectively.
Then, the following proposition is true.

Proposition 7. (Masks of Nondifferentiability) Assume that, for some fixed value of p ∈ [1,∞),
condition W2 is satisfied. Then, the following statements are necessarily true:

1) The p-th power of R is differentiable everywhere on RF̃ .

2) Either:

(a) Everywhere on Ω̂, the random cost function F (·,W ) is differentiable everywhere on X ,
Or:

(b) If, for at least one ω ∈ Ω̂, F (·,W ) is nondifferentiable at some x ∈ X , it must be true
that

R (z) ≡ CND, ∀z ∈
⋃

ω∈Ω̂ND

cl
{(
−∞, F ∗ND (ω)−ml

)}
, (180)

where 0 ≤ CND <∞ is some constant, the function F ∗ND : Ω̂→ [−∞,∞] is defined as

F ∗ND (ω) , sup{F (x,W (ω)) ∈ R |F (·,W (ω)) is nondifferentiable at x}, ω ∈ Ω̂,
(181)

and the set of elementary events Ω̂ND ⊆ Ω̂ is defined as

Ω̂ND ,
{
ω ∈ Ω̂

∣∣∣F (·,W (ω)) is nondifferentiable at some x
}
. (182)

In other words, R must be partially constant, as prescribed by (180).

Proof of Proposition 7. First, existence of the gradient ∇y [(R (F (x,W )− y))p] for all (x, y) ∈
X × cl {(ml,mh)}, which is true by our hypothesis, necessarily implies that the function (R (·))p is
differentiable everywhere on RF̃ , for the particular choice of p ∈ [1,∞). The case of the gradient
∇x [(R (F (x,W )− y))p] is slightly more complicated. In order for ∇x [(R (F (x,W )− y))p] to
exist, it must be the case that, for each fixed x0 ∈ X , either F (·,W ) is differentiable at x0, or
whenever x0 is in the restriction of the set of nondifferentiability points of F (·,W ) to X , say
CFW (·)|X : Ω̂⇒ RN , defined as

CFW (ω)|X , {x ∈ X |F (·,W (ω)) is nondifferentiable at x} , ω ∈ Ω̂, (183)

the stationary point condition

∇y [(R (F (x0,W )− y))p] ≡ 0 (184)
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is satisfied, for all y ∈ cl {(ml,mh)}. Equivalently, we demand that

∇ [(R (z))p] ≡ 0, (185)

for all z ∈ cl {(F (x0,W )−mh, F (x0,W )−ml)}. Due to convexity, nonnegativity, and mono-
tonicity of R (conditions S1, S2 and S3), it is not hard to see that, for every qualifying ω ∈ Ω̂ and
for every x0 ∈ C

F
W (ω)|X , R must partially be of the form

R (z) ≡ CND, ∀z ∈ cl {(−∞, F (x0,W (ω))−ml)} , (186)

where 0 ≤ CND < ∞ is some constant. Working in the same fashion, utilizing the fact that the
multifunction CFW (·)|X is countable-valued and by defining the function F ∗ND : Ω̂→ [−∞,∞] as

F ∗ND (ω) , sup
{
F (x,W (ω)) ∈ R

∣∣∣x ∈ CFW (ω)|X
}
, ω ∈ Ω̂, (187)

we may also obtain the uniform requirement

R (z) ≡ CND, ∀z ∈
⋃

ω∈Ω̂ND

cl
{(
−∞, F ∗ND (ω)−ml

)}
, (188)

where the set Ω̂ND ⊆ Ω̂ is defined as in (182). Therefore, if, for at least one ω ∈ Ω̂, F (·,W ) is
nondifferentiable at some x ∈ X , R must be partially constant, as prescribed by (188). �

As implied by Proposition 7, condition W2 always requires differentiability of the p-th power
of R, everywhere on RF̃ . Additionally, any potential nonsmoothness of F (·,W ) always imposes
further requirements on the structure of R, significantly restricting the allowable choices in regard
to the latter. On the contrary, this is not the case as far as Assumption 5 is concerned, regarding
the choice of R. Specifically, there are a lot of cases where, not only R and/or its powers are allowed
to exhibit corner points, but also F (·,W ) may be nonsmooth, as well. To show that indeed this is
the case, let us consider the following, simple example.

Let p ≡ 1 (for simplicity), let R be any risk regularizer, and consider the objective function

F (x,W ) ≡ F (x,W ) , |x−W | , (189)

whereW ∼ N (0, 1). Although nonsmooth, the random cost function F (·,W ) is differentiable almost
everywhere relative to P, at each fixed x ∈ R, thus satisfying condition P1. It may also easily argued
that condition P2 is also satisfied, as well. Then, we are interested in the scalar-decision, risk-averse
stochastic program

minimize
x

E{|x−W |}+ cE
{
R (|x−W | − E {|x−W |})

}
subject to x ∈ X

, (190)

for some nonempty, non-singleton, convex and compact set X . Note that, for every choice of X , it
is true that

ml ≡ 0 and mh ≡ +∞, (191)
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since W is unbounded. Thus, cl {(ml,mh)} ≡ [0,∞). The random subdifferential multifunction of
F (·,W ) may be expressed as

∂F (x,W ) =


{1} , if x > W

[−1, 1] , if x ≡W
{−1} , if x < W

, (192)

and, thus, every subgradient of F (·,W ) has the form

∇F (x,W ) = 1{x>W} − 1{x<W} + δ1{x≡W}, (193)

where δ ∈ [−1, 1]. Consequently, it is true that |∇F (·,W )| ≤ 1 uniformly on X × Ω, and condition
C1 of Assumption 5 is satisfied with P ≡ ∞. Also, due toW being integrable and X being compact,
it is easy to see that condition C2 of Assumption 5 is satisfied, as well. Let us now study condition
C3, related to the choice ofR. For each x ∈ X , the cost F (x,W ) follows a folded normal distribution
with scale x and location 1, since x −W ∼ N (x, 1). On [0,∞) and for fixed x ∈ X , the cdf of
F (x,W ) is given by

F xW (y) = Φ (y + x) + Φ (y − x)− 1. (194)

Hence, F xW is (uniformly) Lipschitz on [0,∞), since the Gaussian cdf Φ is Lipschitz on R. Con-
sequently, by choosing ∇R ≡ R′+, case (2) of Proposition 4 implies that the choice of R can be
completely unconstrained.

Now, let us see if problem (190) is supported within the framework set by the necessary conditions
of Proposition 7. First, case (1) of Proposition 7 directly implies that R must be differentiable on
RF̃ . Second, case (2) of Proposition 7 implies that, since almost everywhere on Ω, F (·,W ) is not
differentiable everywhere on X , R must be partially constant, in addition to the differentiability
requirement. In particular, for every choice of a certain event Ω̂, there exists a pair (x0, ω0) ∈ X × Ω̂,
such thatW (ω0) ≡ x0, implying the existence of at least one point of nondifferentiability of F (·,W )
on X (however happening with P-measure zero, since W is Gaussian). This fact may be shown by
the following simple argument. Let Ω̂ ⊆ Ω be any event such that P

(
Ω̂
)
≡ 1, and consider the

preimage
W−1 (X ) , {ω ∈ Ω |W (ω) ∈ X } ∈ F . (195)

Of course, we have P
(
W−1 (X )

)
> 0. Suppose that Ω̂

⋂
W−1 (X ) is empty, implying that

P
(

Ω̂
⋂
W−1 (X )

)
≡ 0. But then it would be true that

P
(

Ω̂
⋃
W−1 (X )

)
≡ P

(
Ω̂
)

+ P
(
W−1 (X )

)
− P

(
Ω̂
⋂
W−1 (X )

)
≡ 1 + P

(
W−1 (X )

)
> 1, (196)

which is, of course, absurd. Therefore, the events Ω̂ and W−1 (X ) must necessarily have at least
one element in common. Call this element ω0. Since ω0 ∈ W−1 (X ), there must exist some x0

in X , such that W (ω0) ≡ x0. Now, for every possible choice of Ω̂, it is trivially true that, if
ω ∈ Ω̂ and F (·,W (ω)) is nondifferentiable at some x ∈ X , then W (ω) ≡ x and F (x,W (ω)) ≡ 0.
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Consequently, with the notation of Proposition 7, it follows that, regardless of the choice of the
nonempty feasible set X ,

F ∗ND (ω) ≡ 0, ∀ω ∈ Ω̂, (197)

implying that R must be constant on (−∞, 0]. This yields a major limitation of condition W2. We
should also mention that, for this very simple example, even the choice R (·) ≡ (·)+, which gives the
mean-upper-semideviation risk measure, is excluded if condition W2 is imposed.

Next, let us consider condition W3. In this case, the situation is very similar to condition W1.

Consider the Frobenius norm of ∇ĝF̃W and ∇ĥ
F̃

W , respectively. Regarding the Jacobian ∇ĝF̃W , it is
true that∥∥∥∇ĝF̃W (x, y)

∥∥∥2

F
≡

∥∥∥∥∥
[
0N ∇ (R (z))p|z≡F (x,W )−y∇F (x,W )

1 ∇ (R (z))p|z≡F (x,W )−y

]∥∥∥∥∥
2

F

≡ 1 +
(
∇ (R (z))p|z≡F (x,W )−y

)2
+
(
∇ (R (z))p|z≡F (x,W )−y

)2
‖∇F (x,W )‖22

≤

{
2 + ‖∇F (x,W )‖22 , if p ≡ 1

1 + p2E2(p−1)
(

1 + ‖∇F (x,W )‖22
)
, if p > 1

, (198)

for all x ∈ X and for all y ∈ cl {(ml,mh)}, as a result of Lemma 11, implying that, as long as
‖∇F (x,W )‖2 is uniformly in Z2,

∥∥∥∇ĝF̃W (x, y)
∥∥∥
F
must be uniformly in Z2. Since ∇ĝ

F̃
W is of rank

at most two, we also have∥∥∥∇ĝF̃W (x, y)
∥∥∥2

2
≤
∥∥∥∇ĝF̃W (x, y)

∥∥∥2

F
≤ 2

∥∥∥∇ĝF̃W (x, y)
∥∥∥2

2
, (199)

which means that, if
∥∥∥∇ĝF̃W (x, y)

∥∥∥
F
is uniformly in Z2, so is the spectral norm

∥∥∥∇ĝF̃W (x, y)
∥∥∥

2
(and

conversely). Similarly, the Frobenius norm of ∇ĥ
F̃

W may be explicitly expressed as∥∥∥∥∇ĥF̃W (x)

∥∥∥∥2

F

≡

∥∥∥∥∥∥
IN ∇F (x,W )

∥∥∥∥∥∥
2

F

= N + ‖∇F (x,W )‖22 , (200)

and because ∇ĥ
F̃

W is of rank at most N , it is true that∥∥∥∥∇ĥF̃W (x)

∥∥∥∥2

2

≤
∥∥∥∥∇ĥF̃W (x)

∥∥∥∥2

F

≡ N + ‖∇F (x,W )‖22 ≤ N
∥∥∥∥∇ĥF̃W (x)

∥∥∥∥2

2

, (201)

for all x ∈ X . Apparently, we get that the spectral norm of ∇ĥ
F̃

W is uniformly in Z2 if and only if
‖∇F (x,W )‖2 is uniformly in Z2, as well. This simply means that condition C1 of Assumption 5
is equivalent to condition W3, as with the case of condition W1 and condition C2 of Assumption
5, discussed above.

We now continue with condition W4. Utilizing the fact that, for almost all ω ∈ Ω, ĝF̃W is
differentiable everywhere on X × cl {(ml,mh)}, condition W4 demands that, for almost all ω ∈ Ω,
it is true that∥∥∥∇ĝF̃W (x1, y1)−∇ĝF̃W (x2, y2)

∥∥∥
2
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≡

∥∥∥∥∥
[
0N ∇x [(R (F (x1,W )− y1))p]

1 ∇y [(R (F (x1,W )− y1))p]

]
−

[
0N ∇x [(R (F (x2,W )− y2))p]

1 ∇y [(R (F (x2,W )− y2))p]

]∥∥∥∥∥
2

≡

∥∥∥∥∥
[
0N ∇x [(R (F (x1,W )− y1))p]−∇x [(R (F (x2,W )− y2))p]

0 ∇y [(R (F (x1,W )− y1))p]−∇y [(R (F (x2,W )− y2))p]

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
∇ (R (z))p|z≡F (x1,W )−y1×∇F (x1,W )− ∇ (R (z))p|z≡F (x2,W )−y2×∇F (x2,W )

− ∇ (R (z))p|z≡F (x1,W )−y1 + ∇ (R (z))p|z≡F (x2,W )−y2

]∥∥∥∥∥
2

≤ L
√
‖x1 − x2‖

2
2 + |y1 − y2|

2, (202)

for all ([x1 y1] , [x2 y2]) ∈ [X × cl {(ml,mh)}]2, where L <∞. Without loss of generality, let us call
Ω̂ the certain subset of Ω, such that (202) is true. As with condition W2, without loss of generality,
we can take Ω̂ ≡ ΩE .

We compare (202) with the strongest variation of condition C3, that is, case (1) of Proposition
4. We will see that, under no additional assumptions, case (1) of Proposition 4 cannot imply (202),
by construction. Indeed, even when x1 ≡ x2 , x ∈ X , we may write∥∥∥∇ĝF̃W (x, y1)−∇ĝF̃W (x, y2)

∥∥∥
2

≡

∥∥∥∥∥
[
∇ (R (z))p|z≡F (x1,W )−y1×∇F (x,W )− ∇ (R (z))p|z≡F (x2,W )−y2×∇F (x,W )

− ∇ (R (z))p|z≡F (x,W )−y1 + ∇ (R (z))p|z≡F (x,W )−y2

]∥∥∥∥∥
2

≡

∥∥∥∥∥∥∥
 ∇F (x,W )

− 1

(∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

)∥∥∥∥∥∥∥
2

, (203)

for all (y1, y2) ∈ [cl {(ml,mh)}]2. It is clear that, in order for (203) to yield a Lipschitz inequality
for the involved function, assuming that case (1) of Proposition 4 is true, it would be necessary to
impose assumptions on the size of ∇F (·,W ). Specifically, it is true that∥∥∥∥∥∥∥

 ∇F (x,W )

− 1

(∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

)∥∥∥∥∥∥∥
2

≡
√
‖∇F (x,W )‖22 + 1

∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣
≤ (‖∇F (x,W )‖2 + 1) |y1 − y2| , (204)

for all (y1, y2) ∈ [cl {(ml,mh)}]2, demonstrating need of a bound on ‖∇F (x,W )‖2, uniform on
X × Ω′, where Ω′ ⊆ Ω is a certain event, so that (202) can be verified. Of course, such uniform
boundedness assumption is not made directly neither in Assumption 5, nor in ([Yang et al., 2018],
Assumption 2.1) (it is made in expectation, though). The closest relative to our framework would
be to assume that ‖∇F (x,W )‖2 is in Z∞ (that is, with bounded essential supremum), uniformly
on X , but this condition is too restrictive if it is imposed together with assuming differentiability of
the p-th power of R (case (1) of Proposition 4).
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On the other hand, suppose that (202) is true. Then, for every x1 ≡ x2 ≡ x ∈ X and everywhere
on Ω̂ ≡ ΩE , it is true that

L |y1 − y2| ≥
√
‖∇F (x,W )‖22 + 1

∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣
≥
∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣ , (205)

implying that∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣≤ L |F (x,W )− y2 − (F (x,W )− y1)| , (206)

for all (F (x,W )− y1, F (x,W )− y2) ∈
[
RF̃
]2
. Therefore, it follows that case (1) of Proposition 4

is satisfied with DR,p ≡ L. This shows that condition W4 is in general stronger than the strongest
assumption on the smoothness of (R (z))p considered in this paper whatsoever.

Driven by the detailed discussion above, let us now formulate the following proposition, which
constitutes a precise statement of the fact that the structural framework considered in this work is
more general than the one considered in [Wang et al., 2017, Yang et al., 2018]. The proof is based
on the above and is omitted.

Proposition 8. (Structural Comparisons) The class of mean-semideviation programs supported
under Assumptions 3 and 5 contains the respective class supported under conditions W1−W6 plus
W̃7 (i.e., Assumption 2.1 of [Yang et al., 2018] + W̃7). Further, the inclusion is strict.

5 Conclusion

We have introduced the MESSAGEp algorithm, which is an efficient, data-driven compositional
stochastic subgradient procedure for iteratively solving convex mean-semideviation risk-averse prob-
lems to optimality, and constitutes a parallel variation of the recently developed, general purpose
T -SCGD algorithm of Yang, Wang & Fang [Yang et al., 2018]. We have proposed a flexible and
structure-exploiting set of problem assumptions, under which we have rigorously analyzed the asymp-
totic behavior of the MESSAGEp algorithm. Specifically:

• We have established pathwise convergence of the MESSAGEp algorithm in a strong technical
sense, confirming its asymptotic consistency.

• In the case of a strongly convex cost, we have shown that, for fixed semideviation order p > 1,
the MESSAGEp algorithm achieves a squared-L2 solution suboptimality rate of the order of
O(n−(1−ε)/2) iterations, where ε ∈ [0, 1) is a user-specified constant, related to the stepsize
selection. In particular, for ε > 0, pathwise convergence of the MESSAGEp algorithm is
simultaneously guaranteed, establishing a rate of order arbitrarily close to O(n−1/2), while
ensuring stable pathwise operation. For p ≡ 1, the rate order improves to O(n−2/3), which
also suffices for pathwise convergence, and matches previous results.

• Likewise, in the general case of a convex cost, we have shown that, for any ε ∈ [0, 1), the
MESSAGEp algorithm with iterate smoothing achieves an L1 objective suboptimality rate of
the order of O(n−(1−ε)/(41{p>1}+4)). This result provides maximal rates O(n−1/4), if p ≡ 1,
and O(n−1/8), if p > 1, matching the state of the art, as well.
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We have also discussed the superiority of the proposed framework for convergence, as compared
to that employed earlier in [Yang et al., 2018], within the risk-averse context under consideration.
First, contrary to [Yang et al., 2018], a unique feature of our framework is that it clearly reveals
a well-defined trade-off between the expansiveness of the random cost and the smoothness of the
particular mean-semideviation risk measure. This provides great analytical flexibility, which is very
important for practical considerations. Additionally, we have rigorously demonstrated that the
class of mean-semideviation problems supported herein is strictly larger than the respective class
of problems supported in [Yang et al., 2018]. As a result, this work establishes the applicability
of compositional stochastic optimization for a significantly and strictly wider spectrum of convex
mean-semideviation risk-averse problems, as compared to the state of the art. Consequently, the
purpose of our work is justified from this perspective, as well.
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7 Appendix: Proofs

7.1 Proof of Theorem 2

The first part of the theorem has essentially already been proved in earlier in Section 3.3.3 (in
particular, (28) with CS ≡ 1 and CI ≡ 0, and for some Y ∈ Z1, which implies that E

{
(x− Y )+

}
<

+∞, for all x ∈ R), except for explicitly showing equivalence of interpreting the involved integral
in the Lebesgue and improper Riemann senses. Therefore, in addition to this detail, it suffices to
prove the second part of the theorem (the converse). The proof, presented below, is technical, but
clean and simple.

Consider any nonconstant risk regularizer R : R→ R. By definition, R is convex on R (S1) and,
thus, it admits both left and right (directional) derivatives, which are nondecreasing, everywhere on
R. Let R′+ : R → R be the right derivative of R. Because R′+ is nondecreasing on R, it exhibits
an at most countable number of discontinuities, and of the jump type. By convexity, it follows that
R′+ is right continuous at every such point of discontinuity, as well.

By definition of R′+, it is true that, for every x ∈ R, R′+ (x) ∈ ∂R (x), where the compact-
valued multifunction ∂R : R⇒ R denotes the subdifferential of R. Therefore, for every x ∈ R, the
subderivative R′+ (x) satisfies the defining inequality

R (y)−R (x) ≥ R′+ (x) (y − x) , (207)

for every y ∈ R. Exploiting (207), monotonicity of R (S3) readily implies that R′+ (x) ≥ 0, for all
x ∈ R, whereas, from nonexpansiveness of R (S4), it easily follows that R′+ (x) ≤ 1, for all x ∈ R.
Additionally, from nonnegativity of R (S2), it is true that, for every x ∈ R,

R′+ (x) ≤ R (y)−R (x)

y − x
≤ R (y)

y − x
, ∀y ∈ (x,+∞) , (208)
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and, using the fact that R′+ (x) ≥ 0, for all x ∈ R, we may pass to the limit as x→ −∞, yielding

0 ≤ lim sup
x→−∞

R′+ (x) ≤ lim sup
x→−∞

R (y)

y − x
≡ 0, (209)

implying thatR′+ (x) −→
x→−∞

0, as well. On the other hand, sinceR′+ (x) ≤ 1, for all x ∈ R, it is trivial

to see that 0 < supx∈RR
′
+ (x) ≤ 1 (for nonconstant R). Consequently, the function FY : R→ [0, 1]

defined as

FY (x) ,
R′+ (x)

supx∈RR
′
+ (x)

, ∀x ∈ R, (210)

qualifies as the cdf of some random variable Y : Ω→ R, and we may obviously write

R′+ (x) ≡ FY (x) sup
x∈R
R′+ (x) , ∀x ∈ R. (211)

Now, we know that R is convex on R and, if A denotes the countable set of points where R is
nondifferentiable, its derivative exists on R \ A. Let R′ : R → R denote this derivative, defined on
the set it exists. Then, by definition, it is true that

R′ (x) ≡ R′+ (x) , ∀x ∈ R \ A, (212)

where, of course, A is of Lebesgue measure zero. Consequently, for every (α, x) ∈ R2, such that
α ≤ x, it follows that R′ ≡ R′+, almost everywhere relative to the Lebesgue measure on [α, x]. Also
due to convexity on R (say), R is absolutely continuous on [α, x], for every qualifying choice of α
and x. Therefore, Lebesgue’s Fundamental Theorem of Integral Calculus (Theorems 2.3.4 & 2.3.10
in [Ash and Doléans-Dade, 2000]) implies that

R (x)−R (α) ≡
∫ x

α
R′ (x) dy ≡

∫ x

α
R′+ (y) dy, (213)

where integration is interpreted in the sense of Lebesgue, relative to the Lebesgue measure on the
Borel space (R,B (R)). By monotone convergence, we may deduce that, since R is nondecreasing
and uniformly bounded from below, its limit at −∞ is finite and, in particular,

R (x) −→
x→−∞

inf
x∈R
R (x) ≥ 0. (214)

Also, for every x ∈ R, (213) is true for every R 3 α ≤ x. Therefore, we may pass to the limit in
(213) as α→ −∞, to obtain

R (x)− inf
x∈R
R (x) ≡ lim

α→−∞

∫ x

α
R′+ (y) dy, ∀x ∈ R. (215)

Invoking Lebesgue’s Monotone Convergence Theorem and via a standard sequential argument, it
follows that

lim
α→−∞

∫ x

α
R′+ (y) dy ≡ lim

α→−∞

∫
R′+ (y)1[α,x] (y) dy

=

∫
lim

α→−∞
R′+ (y)1[α,x] (y) dy
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≡
∫
R′+ (y)1[−∞,x] (y) dy ≡

∫ x

−∞
R′+ (y) dy, ∀x ∈ R, (216)

which, together with (211), further implies that

R (x) ≡
(

sup
x∈R
R′+ (x)

)∫ x

−∞
FY (y) dy + inf

x∈R
R (x) , ∀x ∈ R. (217)

In addition to the above, Fubini’s Theorem (Theorem 2.6.6 in [Ash and Doléans-Dade, 2000]) implies
that

+∞ >

∫ x

−∞
FY (y) dy ≡ E

{
(x− Y )+

}
, (218)

for all x ∈ R and for every random variable Y : Ω→ R having FY as its cdf.
To show that the integral involved in (217) is well defined in the improper Riemann sense, note

first that the nondecreasing function is Riemann integrable. Therefore, the Lebesgue integral in
(213) is necessarily equal to the respective Riemann integral. Equivalently, integration in (213) may
be interpreted in the Riemann sense, as well. Then, (215) remains true, and the limit on the RHS
may be interpreted as an improper Riemann integral, by definition. The validity of (217), where
integration is in the improper Riemann sense, follows. Note that, as far as the direct statement
of Theorem 2 is concerned, equivalence of the aforementioned Lebesgue and improper Riemann
integrals may be shown in exactly the same fashion as above.

Finally, let R be constant on R. Then, it is trivial to see that supx∈RR
′
+ (x) ≡ 0, and

infx∈RR (x) ≡ R (x), for all x ∈ R. Then, for any random variable Y : Ω → R, such that
E
{

(x− Y )+

}
< +∞, for all x ∈ R, (217) is trivially true, and, apparently, there is at least one such

random variable. The result now follows. �

7.2 Proof of Lemma 1

Certainly, because φF̃ admits the compositional representation

φF̃ (x) ≡ E {F (x,W )}+ c%
(
gF̃
(
hF̃ (x)

))
, ∀x ∈ X , (219)

it follows that φF̃ will be differentiable as long as the functions E {F (·,W )}, %, gF̃ and hF̃ are in
the respective effective domains, in which case it must be true that

∇φF̃ (x) ≡ ∇E {F (x,W )}+ c∇hF̃ (x) ∇gF̃ (y)
∣∣∣
y≡hF̃

(x)
∇% (z)|

z≡gF̃
(
h
F̃

(x)

) , ∀x ∈ X , (220)

where ∇hF̃ : RN → RN×(N+1) denotes the Jacobian of hF̃ , ∇gF̃ : RN+1 → RN+1 denotes the
gradient of gF̃ , assumed to exist at least for all y ∈ GraphX (E {F (·,W )}), and ∇% : R → R
denotes the derivative of %, also assumed to be well defined at least for every z in the range of gF̃ .

Following a bottom-up approach, we first exploit our basic assumption that F (·,W ) is convex on
X (at least), for every realization W ≡W (ω) , ω ∈ Ω, as well as property P1. Under this setting,
we may invoke ([Shapiro et al., 2014], Theorem 7.51) for each x ∈ X , from where it follows that
the function E {F (·,W )} is differentiable everywhere on X and that, further, we may interchange
differentiation with integration, implying that

∇E {F (x,W )} ≡ E {∇F (x,W )} , ∀x ∈ X . (221)
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This result directly yields the existence of the Jacobian of hF̃ , given by

∇hF̃ (x) ≡

IN E {∇F (x,W )}

 , ∀x ∈ X , (222)

which, of course, is the same as (71), in the statement of Lemma 1.
Next, let us discuss differentiability of gF̃ . We know that, due to convexity of F (·,W ), R and

(·)p, and because of monotonicity of R and (·)p, the composite function (R (F (·,W )− (•)))p is
convex in both variables (at least separately). We would also like to show that (R (F (·,W )− (•)))p

is differentiable at each (x, y) ∈ GraphX (E {F (·,W )}), almost everywhere relative to P.
Indeed, fix an arbitrary point (x, yx) ≡ (x,E {F (x,W )}) in GraphX (E {F (·,W )}). By prop-

erty P1, we know that there is a certain event Dx ⊆ Ω, such that F (·,W (ω)) is differentiable at
x ∈ X , for all ω ∈ Dx. Consequently, by the fact that the identity (•) : R→ R is differentiable every-
where on R, it follows that, for every ω ∈ Dx, the function F (·,W )− (•) is differentiable at (x, yx).
Utilizing property P2, for the same fixed point (x, yx), there exists another certain event Nx ⊆ Ω,
such that, for every ω ∈ Nx, F (x,W (ω)) − yx ≡ F (x,W (ω)) − E {F (x,W )} is not in A, the
countable nullset containing the nondifferentiability points of R. Therefore, for every ω ∈ Dx

⋂
Nx,

with P (Dx

⋂
Nx) ≡ 1, F (·,W (ω)) − (•) is differentiable at (x, yx), and R is differentiable at

F (x,W (ω)) − yx, implying that the composite function R (F (·,W (ω))− (•)) is differentiable at
(x, yx), as well. In other words, we have shown that the function R (F (·,W (ω))− (•)) is differen-
tiable at each arbitrary point (x, yx) in the set GraphX (E {F (·,W )}), for P−almost every ω ∈ Ω.
And since the function (·)p is differentiable everywhere on R, the preceding statement also holds for
(R (F (·,W )− (•)))p.

Further, let us determine the structure of the subdifferential of (R (F (·,W )− (•)))p. Simply,
because the functions R (F (·,W )− (•)) and (·)p are convex, with the latter being nondecreasing,
any subgradient of (R (F (·,W )− (•)))p may be expressed as

∇ (R (F (x,W )− y))p = p (R (F (x,W )− y))p−1∇ [R (F (x,W )− y)] , (223)

for all (x, y) ∈ GraphX (E {F (·,W )}) (at least), where ∇ [R (·,W − (•))] denotes any subgradient
of R (·,W − (•)). This is a direct application of the composition rule in subgradient calculus.
Likewise, another application of the composition rule to the function R (F (·,W )− (•)) yields

∇ [R (F (·,W )− y)] = ∇R (F (x,W )− y)

 ∇F (x,W )

− 1

 (224)

and, thus,

∇ (R (F (x,W )− y))p ≡ p (R (F (x,W )− y))p−1∇R (F (x,W )− y)

 ∇F (x,W )

− 1

 , (225)

for all (x, y) ∈ GraphX (E {F (·,W )}).
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Wemay now invoke ([Shapiro et al., 2014], Theorem 7.51) for each (x, y) ∈ GraphX (E {F (·,W )}),
from where we obtain that the function gF̃ is differentiable everywhere on GraphX (E {F (·,W )})
and that its gradient is given by

∇gF̃ (x, y) ≡ ∇E {(R (F (x,W )− y))p}
≡ E {∇ (R (F (x,W )− y))p}

≡ E

p (R (F (x,W )− y))p−1∇R (F (x,W )− y)

 ∇F (x,W )

− 1


 , (226)

and we are done, since (226) is the same as (72).
As far as the derivative of % is concerned, if p ∈ (1,∞) (if not, % is the identity), it exists

everywhere on the nonnegative semiaxis, except for the origin, and (70) is obviously true. Thus,
from (219), it is clear that we should demand that

gF̃
(
hF̃ (x)

)
≡ E {(R (F (x,W )− E {F (x,W )}))p} > 0, ∀x ∈ X . (227)

Fix x ∈ X . Of course, because R is nonnegative on R, it is true that

E {(R (F (x,W )− E {F (x,W )}))p} ≡ 0 ⇐⇒ R (F (x,W )− E {F (x,W )}) ≡ 0, P − a.e. (228)

Since, additionally, R is nondecreasing on R, the RHS statement of (228) is in turn equivalent to

F (x,W )− E {F (x,W )} ≤ sup {x ∈ R |R (x) ≡ 0} , κR ∈ R, P − a.e., (229)

where, in general, κR ≡ +∞ if and only if R (x) ≡ 0, for all x ∈ R. However, recall that, by
assumption, R is not identically equal to zero everywhere on R; thus, κR ∈ [−∞,∞). Finally, we
have shown that

gF̃
(
hF̃ (x)

)
≡ 0 ⇐⇒ P (F (x,W )− E {F (x,W )} ≤ κR) ≡ 1, (230)

which means that, if P (F (x,W )− E {F (x,W )} ≤ κR) < 1, where κR is fixed in [−∞,∞), then

gF̃
(
hF̃ (x)

)
6= 0 =⇒ gF̃

(
hF̃ (x)

)
> 0. (231)

Enough said. �

7.3 Some Auxiliary Results

In this subsection, let us state some basic, elementary results stemming from Assumption 5, which
will be helpful in both the further characterization of condition C3 of Assumption 5, and the
asymptotic analysis of the MESSAGEp algorithm. First, a direct, but very useful consequence of
condition C1 is summarized in the next proposition.

Lemma 10. (E {F (·,W )} is Lipschitz on X & More) Let condition C1 of Assumption 3 be in
effect. Then, the functions F (·,W ) and E {F (·,W )} satisfy

|E {F (x1,W )} − E {F (x2,W )}| ≤ G ‖x1 − x2‖2 and (232)
E {|F (x1,W )− F (x2,W )|} ≤ 2G ‖x1 − x2‖2 , (233)

for all (x1,x2) ∈ X × X .
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Proof of Lemma 10. Proof of (232) is straightforward, and omitted. To prove (233), we use the
definition of a subgradient and our assumption that the random cost function F (·,W ) is measurably
subdifferentiable on X . For every (x1,x2) ∈ X × X and everywhere on Ω, it is true that

F (x1,W )− F (x2,W ) ≥ (x1 − x2)T ∇F (x2,W ) , (234)

implying that

F (x2,W )− F (x1,W ) ≤ (x2 − x1)T ∇F (x2,W )

≤ ‖x2 − x1‖2 ‖∇F (x2,W )‖2 . (235)

Since x1 and x2 are arbitrary, it follows by symmetry that

− (F (x2,W )− F (x1,W )) ≤ ‖x2 − x1‖2 ‖∇F (x1,W )‖2 . (236)

Consequently, we may write

|F (x2,W )− F (x1,W )| ≤ ‖x2 − x1‖2 (‖∇F (x1,W )‖2 + ‖∇F (x2,W )‖2) , (237)

and taking expectations on both sides of (237) yields

E {|F (x2,W )− F (x1,W )|} ≤ ‖x2 − x1‖2 E {‖∇F (x1,W )‖2 + ‖∇F (x2,W )‖2}
≡ ‖x2 − x1‖2 (E {‖∇F (x1,W )‖2}+ E {‖∇F (x2,W )‖2})

≤ ‖x2 − x1‖2
(∥∥∥‖∇F (x1,W )‖2

∥∥∥
LP

+
∥∥∥‖∇F (x2,W )‖2

∥∥∥
LP

)
≤ ‖x2 − x1‖2 2G, (238)

where we have exploited condition C1. The claim is proved. �

Second, the next result is on the boundedness of the processes generated by the MESSAGEp

algorithm, when p > 1. It is based on condition C4 of Assumption 5, as well as Assumption 6.

Lemma 11. (Case p > 1: Iterate Boundedness) Fix p > 1, let condition C4 of Assumption 5
be in effect. Also, choose y0, β0 and z0, γ0 according to Assumption 6 and suppose that βn ∈ (0, 1],
γn ∈ (0, 1], for all n ∈ N. Then, the composite process {(xn, yn, zn)}n∈N generated by the MESSAGEp

algorithm satisfies the uniform pointwise bounds

yn+1 ∈ [ml,mh] (239)

zn+1 ∈ [εp, Ep] (240)

R
(
F
(
xn,W n+1

2

)
− yn

)
∈ [ε, E ] and (241)

R
(
F
(
xn,W n+1

2

)
− E

{
F
(
xn,W ′)}) ∈ [ε, E ] , ∀n ∈ N, (242)

almost everywhere relative to P, where W ′ ∼ PW .

Proof of Lemma 11. Let us start with
{(
yn+1

)}
n∈N

. It is true that

y1 ≡ (1− β0) y0 + β0F
(
x0,W 1

1

)
66



≥

{
(1− β0)ml + β0ml ≡ ml, if y0 ∈ [ml,mh]

(1− 1) y0 +ml ≡ ml, if β0 ≡ 1
, P − a.e., (243)

and the result follows trivially by induction for all n ∈ N+, and the fact that N is countable.
The procedure bounding yn+1, n ∈ N from above is exactly the same. Since we have shown that
yn+1 ∈ [ml,mh], for all n ∈ N, it also readily follows that

ε ≡ R(ml −mh) ≤ R
(
F
(
xn,W n+1

2

)
− yn

)
≤ R(mh −ml) ≡ E , (244)

and
ε ≤ R

(
F
(
xn,W n+1

2

)
− E

{
F
(
xn,W ′)}) ≤ E , (245)

as well, almost everywhere relative to P. As far as
{(
zn+1

)}
n∈N

is concerned, we work as above,
that is,

z1 ≡ (1− γ0) z0 + γ0

(
R
(
F
(
x0,W 1

2

)
− y0

))p
≥

{
(1− γ0) εp + γ0ε

p ≡ εp, if z0 ∈ [εp, Ep]
(1− 1) z0 + εp ≡ εp, if γ0 ≡ 1

, P − a.e., (246)

and then we use induction, and similarly for the case of the upper bound. �

Third, another expected, but also useful consequence of condition C4 is on the expansiveness of
the composite function (R((·)− •))p, as follows.

Lemma 12. ((R((·)− •))p is Lipschitz) Fix p > 1 and let condition C4 of Assumption 5 be in
effect. Then, it is true that∣∣∣(R(F (x1,W )− y1))p −

(
R
(
F
(
x2,W

′)− y2

))p∣∣∣
≤ Ep−1p

(∣∣F (x1,W )− F
(
x2,W

′)∣∣+ |y1 − y2|
)
, (247)

almost everywhere relative to P, for all ([x1 y1] , [x2 y2]) ∈ [X × cl {(ml,mh)}]2, whereW ′ : Ω→ RM

may be taken as any copy of W .

Proof of Lemma 12. Simply, using a telescoping argument and due to the fact that R is nonexpan-
sive, we proceed directly, also exploiting Lemma 11 (with generic W and W ′ instead of W n+1

2 ),
yielding the inequalities∣∣∣(R(F (x1,W )− y1))p −

(
R
(
F
(
x2,W

′)− y2

))p∣∣∣
≤
∣∣F (x1,W )− y1 − F

(
x2,W

′)+ y2

∣∣ ∑
j∈Np−1

(R (F (x1,W )− y1))j
(
R
(
F
(
x2,W

′)− y2

))p−1−j

≤
(∣∣F (x1,W )− F

(
x2,W

′)∣∣+ |y1 − y2|
) ∑
j∈Np−1

EjEp−1−j

≡
(∣∣F (x1,W )− F

(
x2,W

′)∣∣+ |y1 − y2|
)
Ep−1p, P − a.e., (248)

for all ([x1 y1] , [x2 y2]) ∈ [X × cl {(ml,mh)}]2. �

Remark 10. Observe that, since W ′ may be taken as any copy of W in Lemma 12, the choice
W ′ ≡W is also perfectly valid. �
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7.4 Proof of Proposition 4

To show case (1) of the first part of the result, simply observe that, by assumption, ∇R ≡ ∇R.
Thus, for every qualifying choice of Q, for every x ∈ X and for every (y1, y2) ∈ [cl {(ml,mh)}]2, we
may write ∥∥∥∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣∥∥∥
LQ
≤
∥∥∥DR,p |y1 − y2|

∥∥∥
LQ

≡ DR,p |y1 − y2| , (249)

and we are done.
Cases (2) and (3) of the result will be based on the cdf-based representation of risk regularizers

(Theorem 2). Without loss of generality, assume that R is nonconstant. If it is, the problem is
trivial. For nonconstant R, Theorem 2 implies the existence of a random variable Y : Ω→ R, with
E
{

(x− Y )+

}
<∞, with cdf FY : R→ [0, 1], and of a constant CS ∈ (0, 1], such that

R′+ (x) ≡ CSFY (x) , ∀x ∈ R. (250)

Of course, the random variable Y may be taken as independent of F (x,W ), for all x ∈ X . First,
whenever p > 2, we have, for every x ∈ X and for every (y1, y2) ∈ [cl {(ml,mh)}]2,∥∥∥∣∣∣∇ (R (z))p|z≡F (x,W )−y1 − ∇ (R (z))p|z≡F (x,W )−y2

∣∣∣∥∥∥
L1

≤ p
∥∥∥∣∣∣(R (F (x,W )−y1))p−1∇R (F (x,W )−y1)− (R (F (x,W )−y2))p−1∇R (F (x,W )−y2)

∣∣∣∥∥∥
L1

≤ p
∥∥∥(R (F (x,W )− y1))p−1 |∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|

∥∥∥
L1

+ p
∥∥∥∇R (F (x,W )− y2)

∣∣∣(R (F (x,W )− y1))p−1 − (R (F (x,W )− y2))p−1
∣∣∣∥∥∥
L1

(251)

≤ pEp−1
∥∥∥|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|

∥∥∥
L1

+ pEp−2 (p− 1) |y1 − y2| , (252)

where (251) follows by the triangle inequality and (252) follows from Lemma 12. Similarly, for p ≡ 2,
we get ∥∥∥∥∣∣∣∣∇ (R (z))2

∣∣∣
z≡F (x,W )−y1

− ∇ (R (z))2
∣∣∣
z≡F (x,W )−y2

∣∣∣∣∥∥∥∥
L1

≤ 2E
∥∥∥|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|

∥∥∥
L1

+ 2 |y1 − y2| , (253)

whereas, for p ≡ 1, no further derivation is needed. As far the involved L1-norm is concerned, since
∇R ≡ R′+ by assumption, we may write, for every x ∈ X and for every (y1, y2) ∈ [cl {(ml,mh)}]2,∥∥∥|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|

∥∥∥
L1

≡ E {|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|}
= CSE {|FY (F (x,W )− y1)− FY (F (x,W )− y2)|} (254)
= CSE {(FY (F (x,W )−min {y1, y2})− FY (F (x,W )−max {y1, y2}))}
≡ CSE {P (F (x,W )−max {y1, y2} < Y ≤ F (x,W )−min {y1, y2}|W )}
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≡ CSE
{∫

1(F (x,W )−max{y1,y2},F (x,W )−min{y1,y2}] (y) dPY (y)

}
= CS

∫
E
{
1(F (x,W )−max{y1,y2},F (x,W )−min{y1,y2}] (y)

}
dPY (y) (255)

≡ CS
∫

E
{
1[y+min{y1,y2},y+max{y1,y2}) (F (x,W ))

}
dPY (y)

≡ CS
∫
P (y + min {y1, y2} ≤ F (x,W ) < y + max {y1, y2}) dPY (y) , (256)

where (255) follows from Fubini’s Theorem (the involved double integral is always finite) on the
product measure space

(
R× R,B (R)⊗B (R) ,PY × P

x
W

)
, with Px

W denoting the Borel measure
inducing Fx

W . Exploiting the assumed continuity of Fx
W (Lipschitz or not), we also have, for every

x ∈ X , ∥∥∥|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|
∥∥∥
L1

≡ CS
∫
P (y + min {y1, y2} < F (x,W ) ≤ y + max {y1, y2}) dPY (y)

≡ CS
∫
Fx
W (y + max {y1, y2})− F

x
W (y + min {y1, y2}) dPY (y)

= CS

∫ ∣∣Fx
W (y + y1)− Fx

W (y + y2)
∣∣ dPY (y) , (257)

for all (y1, y2) ∈ [cl {(ml,mh)}]2. If the Lipschitz condition of case (2) is true, we further have∥∥∥|∇R (F (x,W )− y1)−∇R (F (x,W )− y2)|
∥∥∥
L1
≤ CSDF̃

∫
|y1 − y2| dPY (y)

≡ CSDF̃
|y1 − y2| , (258)

for all (y1, y2) ∈ [cl {(ml,mh)}]2, showing that condition C3 is satisfied with

D ,


pEp−1CSDF̃

+ pEp−2 (p− 1) , if p > 2

2ECSDF̃
+ 2, if p ≡ 2

CSDF̃
, if p ≡ 1

. (259)

by taking the supremum of (258) relative to x over X . If the Lipschitz-in-Expectation condition
of case (3) is true, we obtain the desired result of Proposition 4 in exactly the same fashion. In
particular, when p ≡ 1, the equivalence in case (3) of Proposition 4 follows directly by (257), and
the fact that CS 6= 0. Enough said. �

7.5 Proof of Lemma 3

The proof is simple, though somewhat tedious; essentially, it is an exercise on using the triangle and
Cauchy-Schwarz inequalities. First, observe that, under Assumption 5, it is true that

sup
x∈X

∥∥∥‖∇F (x,W )‖2
∥∥∥
L2
≤ sup

x∈X

∥∥∥‖∇F (x,W )‖2
∥∥∥
LP
≤ G <∞, (260)
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for P ∈ [2,∞], due to condition C1.
Fix n ∈ N and let p > 1. Under Assumption 5, by nonexpansiveness of the projection operator

onto the closed and convex set X , and by the triangle inequality, we have∥∥∥xn+1−xn
∥∥∥

2
≡
∥∥∥ΠX

{
xn−αn∇̂

n+1φF̃ (xn, yn, zn)
}
−ΠX{x

n}
∥∥∥

2

≤
∥∥∥αn∇̂n+1φF̃ (xn, yn, zn)

∥∥∥
2

≡ αn
∥∥∥∇F(xn,W n+1

2

)
+c∆n+1 (xn, yn, zn)

∥∥∥
2

≤ αn
∥∥∥∇F(xn,W n+1

2

)∥∥∥
2

+ αnc
∥∥∥∆n+1 (xn, yn, zn)

∥∥∥
2
, (261)

where, by Lemmata 11 and 12,∥∥∥∆n+1 (xn, yn, zn)
∥∥∥

2
≡
∥∥∥(zn)

(1−p)/p
(
∇F

(
xn,W n+1

2

)
−∇F

(
xn,W n+1

1

))
× ∇R

(
F
(
xn,W n+1

2

)
− yn

)(
R
(
F
(
xn,W n+1

2

)
− yn

))p−1
∥∥∥∥

2

≡
(
E
ε

)p−1 ∥∥∥(∇F(xn,W n+1
2

)
−∇F

(
xn,W n+1

1

))∥∥∥
2

≤ Rp

(∥∥∥∇F(xn,W n+1
2

)∥∥∥
2

+
∥∥∥∇F(xn,W n+1

1

)∥∥∥
2

)
, (262)

almost everywhere relative to P, where we have defined Rp ,
(
Eε−1

)p−1
. Consequently, we may

bound the `2-norm of xn+1−xn from above as∥∥∥xn+1−xn
∥∥∥

2
≤ αn

(
1 + cRp

) ∥∥∥∇F(xn,W n+1
2

)∥∥∥
2

+ αnc

(
E
ε

)p−1 ∥∥∥∇F(xn,W n+1
1

)∥∥∥
2
, (263)

almost everywhere relative to P. This, of course, implies that

ED
n

{∥∥∥xn+1−xn
∥∥∥2

2

}
≤ α2

nED
n

{((
1+ cRp

)∥∥∥∇F(xn,W n+1
2

)∥∥∥
2

+ cRp

∥∥∥∇F(xn,W n+1
1

)∥∥∥
2

)2
}
, (264)

almost everywhere relative to P, as well. Let us focus more closely on the conditional expectation on
the RHS of (264). First, by the substitution rule for conditional expectations, which is guaranteed to
be valid in all our discussions in this paper, due to the existence of regular conditional distributions
on Borel spaces (see, for instance, [Durrett, 2010]), it is true that

ED
n

{((
1 + cRp

)∥∥∥∇F(xn,W n+1
2

)∥∥∥
2

+ cRp

∥∥∥∇F(xn,W n+1
1

)∥∥∥
2

)2
}

≡ E
{((

1 + cRp
)∥∥∥∇F(x,W n+1

2

)∥∥∥
2

+ cRp

∥∥∥∇F(x,W n+1
1

)∥∥∥
2

)2
}∣∣∣∣

x≡xn
, (265)

almost everywhere relative to P, where, in the RHS of (265), expectation is with respect to the
product measure PW ×PW on the Borel measurable space

(
RM × RM ,B

(
RM

)
⊗B

(
RM

))
. This
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due to mutual independence ofW n+1
1 andW n+1

2 , and also their independence relative to Dn. Then,
by the triangle inequality of the L2-norm on the aforementioned product probability space, we may
write, for x ∈ X ,√

E
{((

1 + cRp
)∥∥∥∇F(x,W n+1

2

)∥∥∥
2

+ cRp

∥∥∥∇F(x,W n+1
1

)∥∥∥
2

)2
}

≡
∥∥∥∥(1 + cRp

)∥∥∥∇F(x,W n+1
2

)∥∥∥
2

+ cRp

∥∥∥∇F(x,W n+1
1

)∥∥∥
2

∥∥∥∥
L2

≤
(
1 + cRp

) ∥∥∥∥∥∥∥∇F(x,W n+1
2

)∥∥∥
2

∥∥∥∥
L2

+ cRp

∥∥∥∥∥∥∥∇F(x,W n+1
1

)∥∥∥
2

∥∥∥∥
L2

≤
(
2cRp + 1

)
G, (266)

or, by taking squares on both sides,

E
{((

1 + cRp
)∥∥∥∇F(x,W n+1

2

)∥∥∥
2

+ cRp

∥∥∥∇F(x,W n+1
1

)∥∥∥
2

)2
}
≤ (2c+1)2G2, (267)

almost everywhere relative to P. Thus, it follows that

ED
n

{∥∥∥xn+1−xn
∥∥∥2

2

}
≤ α2

n

(
2cRp + 1

)2
G2, (268)

almost everywhere relative to P. In case p ≡ 1, it may be easily shown that the respective bound
may be recovered by setting p ≡ 1 in (268) (pretending that E and ε are finite). Finally, note that,
for every value of p, (268) holds for each n ∈ N, and N is, of course, countable. Enough said. �

7.6 Proof of Lemma 5

Fix n ∈ N, and let yn−S F̃ (xn) , EnS , for brevity. Then, we may write∣∣∣En+1
S

∣∣∣2≡∣∣∣(1− βn) yn + βnF
(
xn,W n+1

1

)
−S F̃

(
xn+1

)∣∣∣2
≡
∣∣∣(1− βn)

(
yn − S F̃ (xn)

)
+ βn

(
F
(
xn,W n+1

1

)
− S F̃ (xn)

)
+ S F̃ (xn)−S F̃

(
xn+1

)∣∣∣2
≡
∣∣∣(1− βn)EnS + βn

(
F
(
xn,W n+1

1

)
− S F̃ (xn)

)
+ S F̃ (xn)−S F̃

(
xn+1

)∣∣∣2
≤(1 + βn)

∣∣∣(1− βn)EnS + βn

(
F
(
xn,W n+1

1

)
− S F̃ (xn)

)∣∣∣2
+
(

1 + β−1
n

)∣∣∣S F̃ (xn)−S F̃
(
xn+1

)∣∣∣2
≡(1 + βn) (1− βn)2 |EnS |

2
+ (1 + βn)β2

n

∣∣∣F(xn,W n+1
1

)
− S F̃ (xn)

∣∣∣2
+ 2

(
1− β2

n

)
βnE

n
S

(
F
(
xn,W n+1

1

)
− S F̃ (xn)

)
+
(

1 + β−1
n

) ∣∣∣S F̃ (xn)−S F̃
(
xn+1

)∣∣∣2
≤(1− βn) |EnS |

2
+ 2β2

n

∣∣∣F(xn,W n+1
1

)
− S F̃ (xn)

∣∣∣2
+ 2 (1 + βn) (1− βn)βnE

n
S

(
F
(
xn,W n+1

1

)
− S F̃ (xn)

)
+ 2β−1

n G2
∥∥∥xn+1−xn

∥∥∥2

2
, (269)
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where we have used our assumption that βn ≤ 1. Taking expectations relative to Dn on both sides,
we have

ED
n

{∣∣∣En+1
S

∣∣∣2} ≤ (1− βn) |EnS |
2

+ β2
n2V + 0 + β−1

n 2G2ED
n

{∥∥∥xn+1−xn
∥∥∥2

2

}
, (270)

almost everywhere relative to P. The fact that N is countable completes the proof. �

7.7 Proof of Lemma 6

Fix n ∈ N. By adding and subtracting appropriate terms as in the proof of Lemma 5 above, it is
then easy to show that the difference zn −DF̃ (xn, yn) , EnD may be expressed as

En+1
D ≡ (1− γn)EnD +

(
DF̃ (xn, yn)−DF̃

(
xn+1, yn+1

))
+ γn

((
R
(
F
(
xn,W n+1

2

)
− yn

))p
−DF̃ (xn, yn)

)
. (271)

Let us consider the quantity |EnD|
2. We may expand the square one time, yielding∣∣∣En+1

D

∣∣∣2 ≤ (1 + γn)
∣∣∣(1− γn)EnD + γn

((
R
(
F
(
xn,W n+1

2

)
− yn

))p
−DF̃ (xn, yn)

)∣∣∣2
+
(

1 + γ−1
n

) ∣∣∣DF̃ (xn, yn)−DF̃
(
xn+1, yn+1

)∣∣∣2
≡ (1 + γn) (1− γn)2 |EnD|

2
+ (1 + γn) γ2

n

∣∣∣(R(F(xn,W n+1
2

)
− yn

))p
−DF̃ (xn, yn)

∣∣∣2
+ 2

(
1− γ2

n

)
γnE

n
D

((
R
(
F
(
xn,W n+1

2

)
− yn

))p
−DF̃ (xn, yn)

)
+
(

1 + γ−1
n

) ∣∣∣DF̃ (xn, yn)−DF̃
(
xn+1, yn+1

)∣∣∣2 (272)

As in the proof of Lemma 5, taking conditional expectations relative to Dn on both sides and since
γn ≤ 1, we get

ED
n

{∣∣∣En+1
D

∣∣∣2} ≤ (1− γn) |EnD|
2

+ 2γ2
nED

n

{∣∣∣(R(F(xn,W n+1
2

)
− yn

))p
−DF̃ (xn, yn)

∣∣∣2}
+ 2γ−1

n ED
n

{∣∣∣DF̃ (xn, yn)−DF̃
(
xn+1, yn+1

)∣∣∣2}+ 0. (273)

Next, we consider the last two nonzero terms of the RHS of (273) separately. First, we may write

ED
n

{∣∣∣(R(F(xn,W n+1
2

)
− yn

))p
−DF̃ (xn, yn)

∣∣∣2}
≤ ED

n

{(
R
(
F
(
xn,W n+1

2

)
− yn

))2p
}

+ ED
n

{(
DF̃ (xn, yn)

)2
}

≤ 2E2p, P − a.e.. (274)

Second, observe that, by Lemmata 12 and 10, we get∣∣∣DF̃(xn+1, yn+1
)
−DF̃ (xn, yn)

∣∣∣
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≡
∣∣∣ED

n+1

{(
R
(
F
(
xn+1,W ′

)
−yn+1

))p
−
(
R
(
F
(
xn,W ′)−yn))p}∣∣∣

≤ E
D

n+1

{∣∣∣(R(F(xn+1,W ′
)
−yn+1

))p
−
(
R
(
F
(
xn,W ′)−yn))p∣∣∣}

≤ Ep−1p
(
E

D
n+1
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)
− F

(
xn,W ′)∣∣∣}+

∣∣∣yn+1 − yn
∣∣∣)

≤ Ep−1p
(

2G
∥∥∥xn+1 − xn

∥∥∥
2

+ βn

∣∣∣F(xn,W n+1
1

)
− yn

∣∣∣)
≤ Ep−1p

(
2G
∥∥∥xn+1 − xn

∥∥∥
2

+ βn (mh −ml)
)

≡ 2GEp−1p
∥∥∥xn+1 − xn

∥∥∥
2

+ βnE
p−1p (mh −ml) , P − a.e. (275)

Additionally, it is true that∣∣∣DF̃(xn+1, yn+1
)
−DF̃ (xn, yn)

∣∣∣2 ≤ 8G2E2p−2p2
∥∥∥xn+1 − xn

∥∥∥2

2
+ β2

n2E2p−2p2 (mh −ml)
2 . (276)

Combining (276), (274) and (273), we end up with the inequality

ED
n

{∣∣∣En+1
D

∣∣∣2} = (1− γn) |EnD|
2

+ γ−1
n 16G2E2p−2p2ED

n

{∥∥∥xn+1 − xn
∥∥∥2

2

}
+ β2

nγ
−1
n 4E2p−2p2 (mh −ml)

2 + γ2
n4E2p, (277)

being valid almost everywhere relative to P. But N is countable. �

7.8 Proof of Lemma 7

As usual, fix n ∈ N+, and let p > 1. Nonexpansiveness of the projection operator onto X yields∥∥∥xn+1−x∗
∥∥∥2

2
≡
∥∥∥ΠX

{
xn−αn∇̂

n+1φF̃ (xn, yn, zn)
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−ΠX
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2
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2
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2
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(
xn,S F̃ (xn) ,DF̃ (xn)

)
+Un+1, (278)

everywhere on Ω, where the function Un+1 : Ω→ R is defined as

Un+1 (279)

, 2cαn
(
xn − x∗

)T (
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(
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×
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.
From the proof of Lemma 3 (Section 7.5), it readily follows that
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Hence, taking conditional expectations on both sides of (278) relative to Dn, we have
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, (281)

almost everywhere relative to P, where in the last inequality, we have exploited our assumption
that the objective function φF̃ is convex. Therefore, our main concern now is properly bounding
ED

n

{
Un+1

}
. By Cauchy-Schwarz, Un+1 may be bounded from above as

Un+1 ≤ 2cαn
∥∥xn − x∗∥∥
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(∥∥∥∇F(xn,W n+1
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× |An1 (xn)Cn1 (xn)− An2 (xn, yn)Cn2 (zn)| , (282)

everywhere on Ω, as well.
Now, let Assumption 5 be in effect. Making use of the fact that ∇R is uniformly upper bounded

by unity and of Lemmata 11 and 12, and the resulting inequality
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we may further bound the absolute difference on the RHS of (282) from above as

|An1 (xn)Cn1 (xn)− An2 (xn, yn)Cn2 (zn)|
≤ Cn2 (zn)|An1(xn)−An2(xn, yn)|+ An1 (xn)|Cn1(xn)−Cn2(zn)|

≤
(

1

ε

)p−1

|An1(xn)−An2(xn, yn)|+ pEp−1 |Cn1(xn)−Cn2(zn)|

≤
(

1

ε

)p−1

|An1(xn)−An2(xn, yn)|+ (p− 1)
Ep−1

ε2p−1

∣∣∣zn−DF̃ (xn)
∣∣∣ , (284)
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almost everywhere relative to P. Utilizing (284) and taking conditional expectations relative to Dn

on both sides of (282), we have

ED
n

{
Un+1

}
≤ 2cαn
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2

×

((
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{(∥∥∥∇F(xn,W n+1
1
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2

+
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2

)∥∥∥
2

)
|An1 (xn)− An2 (xn, yn)|

}
+ (p− 1)
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ε2p−1 ED
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{(∥∥∥∇F(xn,W n+1
1
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2

+
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2

)∥∥∥
2

)∣∣∣zn −DF̃ (xn)
∣∣∣}), (285)

almost everywhere relative to P. Let us consider each of the three terms on the RHS of (285)
separately. Regarding the term related to zn, exploiting condition C1, we may write

ED
n

{(∥∥∥∇F(xn,W n+1
1

)∥∥∥
2

+
∥∥∥∇F(xn,W n+1

2

)∥∥∥
2

)}
≡
∥∥∥∥∥∥∥∇F(x,W n+1

1

)∥∥∥
2
+
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2

)∥∥∥
2

∥∥∥∥
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∣∣∣∣∣
x≡xn

∣∣∣zn −DF̃ (xn)
∣∣∣

≤ 2G
∣∣∣zn −DF̃ (xn)

∣∣∣, P − a.e. (286)

As far as the remaining term of (285) containing An1 and An2 is concerned, the situation is somewhat
more complicated. Recall that, by assumption, we have P ∈ [2,∞], P/ (P − 1) ≤ Q ≤ ∞, and
P−1 +Q−1 ≤ 1. Then, we may invoke the generalized Hölder’s Inequality for finite measure spaces
(on the appropriate Borel space), along with condition C3, obtaining
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∣∣∣ , (287)

almost everywhere relative to P. Combining (285) with (286) and (287), we readily obtain the upper
bound

ED
n

{
Un+1

}
≤ 4B̃pGcαn

∥∥xn−x∗∥∥
2

(∣∣∣yn−S F̃ (xn)
∣∣∣+∣∣∣zn−DF̃ (xn)

∣∣∣), P − a.e., (288)

where the constant B̃p <∞ is defined as

B̃p , max

{(
1

ε

)p−1

D, (p− 1)
Ep−1

ε2p−1

}
. (289)

As a next step, recalling Lemma 12, we observe that∣∣∣zn−DF̃ (xn)
∣∣∣
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≡
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∣∣∣
≤
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F
(
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))p}
− ED

n

{(
R
(
F
(
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≡
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R
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F
(
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))p
−
(
R
(
F
(
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≤
∣∣∣zn −DF̃ (xn, yn)

∣∣∣+ ED
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))p
−
(
R
(
F
(
xn,W ′)−yn))p∣∣∣}

≤
∣∣∣zn −DF̃ (xn, yn)

∣∣∣+ Ep−1p
∣∣∣yn − S F̃ (xn)

∣∣∣ , P − a.e.. (290)

This yields, in turn,

ED
n

{
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}
≤ 4BpGcαn
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2

∣∣∣yn−S F̃ (xn)
∣∣∣

+ 4BpGcαn
∥∥xn−x∗∥∥

2

∣∣∣zn −DF̃ (xn, yn)
∣∣∣, (291)

where Bp ,
(

1 + Ep−1p
)
B̃p. Finally, invoking Lemmata 5 and 6, ED

n

{
Un+1

}
may be further

bounded as

ED
n

{
Un+1

}
≤ 4B2

pG
2c2α

2
n

βn
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2
+ βn
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γn
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2
+ γn

∣∣∣zn −DF̃ (xn, yn)
∣∣∣2 , (292)

almost everywhere relative to P.
As a result, invoking Lemma 11, (281) may be further bounded from above as

ED
n

{∥∥∥xn+1−x∗
∥∥∥2

2

}
≤

(
1 + 4B2

pG
2c2

(
α2
n

βn
+
α2
n

γn

))∥∥xn − x∗∥∥2

2
+ α2

n

(
2cRp + 1

)2
G2 − 2αn

(
φF̃ (xn)− φF̃∗

)
+ βn

∣∣∣yn−S F̃ (xn)
∣∣∣2+γn

∣∣∣zn −DF̃ (xn, yn)
∣∣∣2 (293)

almost everywhere relative to P, yielding (118) in the statement of Lemma 6. The fact that N+ is
countable completes the proof when p > 1. For the case where p ≡ 1, exactly the same procedure
yields the constant Bp ≡ D, whereas the ratio α2

n/γn and last term on the RHS of (293) (left to
right) disappears. �

7.9 A Generalization of Chung’s Lemma

The following result is a generalization of Chung’s Lemma [Chung, 1954], which is an old and
well-known result for analyzing convergence rates of stochastic approximation algorithms.
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Lemma 13. (Generalized Chung’s Lemma) Consider any nonnegative sequence {Sn}n∈N, such
that

Sn+1 ≤ (1− αn)Sn + Cβn, ∀n ∈ N, (294)

where {αn}n∈N, {βn}n∈N are also nonnegative sequences, and C ≥ 0. Suppose that

n+ , min
{
n ∈ N|αn′ ≤ 1, ∀n′ ∈ Nn

}
∈ [0,∞) , (295)

and choose no ∈ Nn
+

. Then, for every n ∈ Nno , it is true that

Sn+1 ≤ Sno
∏
i∈Nno

n

(1− αi) + C
∑
i∈Nno

n

βi
∏

j∈Ni+1
n

(
1− αj

)
, (296)

where, by convention,
∏
j∈Nn+1

n
(·) ≡

∏n
j=n+1 (·) ≡ 1.

Proof of Lemma 13. Use simple induction; enough said. �

7.10 Proof of Lemma 9

In the following, we consider the case where p > 1. If p ≡ 1, the proof is similar, albeit simpler.
From the proof of Lemma 7, we have already shown that
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}
, (297)

and that
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2

∣∣∣zn−DF̃ (xn, yn)
∣∣∣ , (298)

almost everywhere relative to P, for each n ∈ N.
First, we exploit our assumption in regard to strong convexity of the objective φF̃ , and taking

expectations on both sides of (297), we get

E
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{∥∥xn − x∗∥∥2

2

}
+ α2

n

(
2cRp + 1

)2
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{
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}
, (299)

being true for all n ∈ N. Let us focus on appropriately bounding the term E
{
Un+1

}
, for n ∈ N. It

is true that
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n

{
Un+1

}
≤ σ
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∣∣∣2) , (300)

almost everywhere relative to P. Again, taking expectations on both sides, we have

E
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≤σαnE
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+αn

8B2
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∣∣∣2}), (301)
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for all n ∈ N. For brevity, we hereafter make the identifications

An , E
{∥∥xn − x∗∥∥2

2

}
, (302)

Bn , E
{∣∣∣yn−S F̃ (xn)

∣∣∣2} and (303)

Cn , E
{∣∣∣zn −DF̃ (xn, yn)

∣∣∣2} , ∀n ∈ N. (304)

As a result, we arrive at the inequalities

An+1 ≤ (1− 2σαn)An + α2
n

(
2cRp + 1

)2
G2 + E

{
Un+1

}
and (305)

E
{
Un+1

}
≤ σαnA

n + αn
8B2
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2c2

σ
(Bn + Cn) , ∀n ∈ N, (306)

which imply that

An+1 ≤ (1− σαn)An + α2
n

(
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)2
G2 + αn

8B2
pG

2c2

σ
(Bn + Cn) , ∀n ∈ N. (307)

By Lemmata 3, 5 and 6, we know that (by taking expectations on both sides), for every n ∈ N+,
Bn and Cn satisfy the recursive inequalities

Bn≤(1−βn−1)Bn−1 +
α2
n−1

βn−1
2
(
2cRp+1

)2
G4 +β2

n−12V and (308)
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)2
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Now, for simplicity and clarity, let us define a strictly problem dependent constant
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Then, it is true that

An+1 ≤ (1− σαn)An + α2
nΣ + αn

Σ

σ
Bn + αn

Σ

σ
Cn, with (311)
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Σ + γ2
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Next, let {∆n
B ≥ 0}

n∈N+ and {∆n
C ≥ 0}

n∈N+ be two auxiliary correction sequences, to be determined
shortly. It then follows that
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implying that, for every n ∈ N+,(
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Exactly the same procedure for (313) yields(
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for all n ∈ N+. Simply combining (311), (315) and (316), we obtain
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or, equivalently,
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Driven by the form of (318), we would first like to choose ∆n
B and ∆n

C such that, at least for n
sufficiently large,

(1− βn−1)

(
∆n
B + αn

Σ
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)
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B, and (319)
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)
≤ (1− σαn) ∆n

C . (320)
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The following procedure is exactly the same for both terms, so let us take, say, ∆n
B. We may write

(319) equivalently as

(1− βn−1)αn
Σ

σ
≤ (βn−1 − σαn) ∆n

B. (321)

Since, by condition G1,

σαn ≤
K − 1

K
min {βn−1, γn−1} < βn−1 ≤ 1, (322)

for every n ∈ Nno and some globally fixed no ∈ N+, (319) is also equivalent to
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σ
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Therefore, it suffices to choose

∆n
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Σ

σ
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Additionally, by defining ∆
no−1
B ,∆

no
B , it is easy to see that conditions G1 and G2 imply that

αn
βn−1

Σ

σ
≤∆n

B ≤ K
αn
βn−1

Σ

σ
and (325)

∆n
B ≤∆n−1

B , ∀n ∈ Nno , (326)

respectively. Of course, similar results hold in a completely analogous fashion for ∆n
C , for every

n ∈ Nno . Consequently, letting

Jn , An + ∆n−1
B Bn−1 + ∆n−1

C Cn−1, ∀n ∈ N+, (327)

and defining the constant
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Σ
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{
(K + 1)

Σ
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}
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standard manipulations show that the RHS of expression (318) may be further bounded as

Jn+1≤ (1−σαn) Jn+Σ̃
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)
, (329)

for all n ∈ Nno .
Lastly, let us now show the last part of Lemma 9. If, additionally, the assumptions of Lemma 8

are in effect, it follows that
sup
n∈N

Bn <∞ and sup
n∈N

Cn <∞. (330)

Thus, we may write

An+1 ≤ (1− σαn)An + α2
nσ

2Λ + αnσΛ, ∀n ∈ N. (331)
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where
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We now make use of conditions G1 and G2. It is true that
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and, of course, A0 ≤ D. We use simple induction. Suppose that, for some n ∈ N, An ≤ D. Then,
there are two possibilities for σαn ≥ 0. Either σαn > 1, which is of course only possible if n ∈ Nno−1,
in which case we have
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or σαn ≤ 1, which might happen for any n ∈ N, yielding
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As a result, we have shown that An+1 ≤ D, as well, implying that

sup
n∈N

An ≤ D <∞. (336)

By definition of Jn, for n ∈ N+, we may write (utilizing condition G2)
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and the proof is now complete. �
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7.11 Proof of Theorem 5

First, let us verify conditions G1 and G2 of Lemma 9. For G1, we perform, for every n ∈ N2, the
equivalence test

σαn ≡
1

n
≤ K − 1

K

1

(n− 1)τ2
≡ K − 1

K
min {βn−1, γn−1} ⇐⇒ K ≥ 1

1− (n− 1)τ2

n

, (338)

which implies that any K ≥ 2 works. Therefore, G1 is satisfied for all n ∈ N2 by choosing, say,
K ≡ 2. To verify G2 for the sequence {βn}n∈N, we would also like to show that

αn+1βn−1 ≡
1

σ (n+ 1)

1

(n− 1)τ2
≤ 1

σn

1

nτ2
≡ αnβn, (339)

for all sufficiently large n ∈ N2. Indeed, it is a standard calculus exercise to show that

nτ2

(n− 1)τ2
≤ n+ 1

n
, ∀n ∈

[
1

1− τ1/(τ2+1)
2

,∞

)⋂
N ⊆ N3. (340)

To verify G2 for the sequence {γn}n∈N, it suffices to observe that

nτ2

(n− 1)τ2
>

nτ3

(n− 1)τ3
, ∀n ∈ N2, (341)

implying that

nτ3

(n− 1)τ3
≤ n+ 1

n
⇐⇒ αn+1γn−1 ≤ αnγn, ∀n ∈

[
1

1− τ1/(τ2+1)
2

,∞

)⋂
N. (342)

Therefore, we may apply Lemma 9 by choosing

no ≡ no (τ2) ≡

⌈
1

1− τ1/(τ2+1)
2

⌉
, (343)

in which case it must be true that, for every n ∈ Nno ,

Jn+1 ≤ (1− σαn) Jn + Σ̃

(
σ2α2

n +
σ3αnα

2
n−1

β2
n−1

+ σαnβn−1 +
σ3αnα

2
n−1

γ2
n−1

+
σαnβ

2
n−1

γ2
n−1

+ σαnγn−1

)

≤ (1− σαn) Jn + Σ̃

(
σ2α2

n +
σ3α3

n−1

β2
n−1

+ σαn−1βn−1 +
σ3α3

n−1

γ2
n−1

+
σαn−1β

2
n−1

γ2
n−1

+ σαn−1γn−1

)

≤ (1− σαn) Jn + Σ̃

(
σ2α2

n + 2
σ3α3

n−1

β2
n−1

+
σαn−1β

2
n−1

γ2
n−1

+ 2σαn−1γn−1

)

≡
(

1− 1

n

)
Jn + Σ̃

(
1

n2 + 2
1

(n− 1)3−2τ2
+

1

(n− 1)1+2τ2−2τ3
+ 2

1

(n− 1)1+τ3

)

≤
(

1− 1

n

)
Jn + Σ̃

(
1

n2 + 2Λ2 (τ2)
1

n3−2τ2
+ Λ3 (τ2)

1

n1+2τ2−2τ3
+ 2Λ23 (τ2)

1

n1+τ3

)
, (344)

82



where we have used the fact that, for our choice of the sequence {αn}n∈N, it is true that αn ≤ αn−1,
for all n ∈ N+, and the constants Λ2,Λ3 and Λ23 are defined as

Λ2 (τ2) ,

(
no (τ2)

no (τ2)− 1

)3−2τ2

< 8, (345)

Λ3 (τ2) ,

(
no (τ2)

no (τ2)− 1

)1+2τ2−2τ3

< 8 and (346)

Λ23 (τ2) ,

(
no (τ2)

no (τ2)− 1

)1+τ3

< 4 < 8. (347)

Consequently, we obtain the bound

Jn+1 ≤
(

1− 1

n

)
Jn + 16Σ̃

(
1

n2 +
1

n3−2τ2
+

1

n1+2τ2−2τ3
+

1

n1+τ3

)
, (348)

being true for all n ∈ Nno , where no depends on τ2 according to (343).
Let us now apply the Generalized Chung’s Lemma (Lemma 13) to the recursion (348). For every

n ∈ Nno , we have

Jn+1 ≤ Jno
∏
i∈Nno

n

(
1− 1

i

)
+ 16Σ̃

∑
i∈Nno

n

(
1

i2
+

1

i3−2τ2
+

1

i1+2τ2−2τ3
+

1

i1+τ3

) ∏
j∈Ni+1

n

(
1− 1

j

)

≡ Jno
∏
i∈Nno

n

(
i− 1

i

)
+ 16Σ̃

∑
i∈Nno

n−1

(
1

i2
+

1

i3−2τ2
+

1

i1+2τ2−2τ3
+

1

i1+τ3

) ∏
j∈Ni+1

n

(
j − 1

j

)

+ 16Σ̃

(
1

n2 +
1

n3−2τ2
+

1

n1+2τ2−2τ3
+

1

n1+τ3

)
≡ Jno

no − 1

n
+ 16Σ̃

∑
i∈Nno

n−1

(
1

i2
+

1

i3−2τ2
+

1

i1+2τ2−2τ3
+

1

i1+τ3

)
i

n

+ 16Σ̃

(
1

n2 +
1

n3−2τ2
+

1

n1+2τ2−2τ3
+

1

n1+τ3

)
≡ Jno

no − 1

n
+

16Σ̃

n

∑
i∈Nno

n−1

(
1

i
+

1

i2−2τ2
+

1

i2τ2−2τ3
+

1

iτ3

)

+ 16Σ̃

(
1

n2 +
1

n3−2τ2
+

1

n1+2τ2−2τ3
+

1

n1+τ3

)
. (349)

Due to our assumption that 1/2 ≤ τ3 < τ2 < 1, it holds that 2 − 2τ2 6= 1 and 2τ2 − 2τ3 6= 1.
Consequently, it is true that

∑
i∈Nno

n−1

1

i2−2τ2
<

1

n2−2τ2
o

+
n1−(2−2τ2)

1− (2− 2τ2)
, (350)

∑
i∈Nno

n−1

1

i2τ2−2τ3
<

1

n2τ2−2τ3
o

+
n1−(2τ2−2τ3)

1− (2τ2 − 2τ3)
and (351)
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∑
i∈Nno

n−1

1

iτ3
<

1

nτ3o
+
n1−τ3

1− τ3
, (352)

whereas ∑
i∈Nno

n−1

1

i
<

1

no
+ log (n) . (353)

By defining the quantity

R ≡ R (τ2, τ3) ,
1

1−max {2− 2τ2, 2τ2 − 2τ3, τ3}
> 1, (354)

we may further bound (349) from above as

Jn+1 ≤ Jno
no − 1

n
+ 16Σ̃R

(
log (n)

n
+

1

n2−2τ2
+

1

n2τ2−2τ3
+

1

nτ3

)
+

64Σ̃

n
+ 16Σ̃

(
1

n2 +
1

n3−2τ2
+

1

n1+2τ2−2τ3
+

1

n1+τ3

)
≤ Jnono + 64Σ̃

n
+ 32Σ̃R

(
log (n)

n
+

1

n2−2τ2
+

1

n2τ2−2τ3
+

1

nτ3

)

≤
no

(
Jno + 64Σ̃

)
n

+ 32Σ̃R

(
1

n1/2
+

1

n2−2τ2
+

1

n2τ2−2τ3
+

1

nτ3

)

≤
no

(
Jno + 64Σ̃

)
n

+ 128Σ̃R
1

nmin{1/2,2−2τ2,2τ2−2τ3,τ3}

≡
no

(
Jno + 64Σ̃

)
n

+ 128Σ̃R
1

nmin{2−2τ2,2τ2−2τ3}
, (355)

For our stepsize choices, it is trivial to see that the remaining condition G3 of Lemma 9 is also
satisfied. Therefore, it must be true that

Jn+1 ≤
no

(
sup

n∈N+ Jn + 64Σ̃
)

n
+

128Σ̃R

nmin{2−2τ2,2τ2−2τ3}
, ∀n ∈ Nno , (356)

where sup
n∈N+ Jn <∞, and defining another constant Σ̂ , max

{(
sup

n∈N+ Jn + 64Σ̃
)
, 128Σ̃

}
, we

end up with the inequality

E
{∥∥∥xn+1 − x∗

∥∥∥2

2

}
≤ Jn+1 ≤ Σ̂no

n
+

Σ̂R

nmin{2−2τ2,2τ2−2τ3}
, ∀n ∈ Nno , (357)

completing the proof for first part Theorem 5.
To prove the second part, let

τ2 ≡
3 + ε

4
and τ3 ≡

1 + δε

2
, (358)
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for some ε ∈ [0, 1) and δ ∈ (0, 1). Then, for the exponents of the corresponding terms in (357), we
have the identities

2− 2τ2 ≡
1− ε

2
and (359)

2τ2 − 2τ3 ≡
1− ε (2δ − 1)

2
, (360)

out of which the first is the smallest. Additionally, it also true that

R (τ2, τ3) ≡ R (δ, ε) ≡ 1

1−max

{
1− ε

2
,
1− ε (2δ − 1)

2
,
1 + δε

2

}
≡ 1

1− 1

2
max {1− ε, 1− ε (2δ − 1) , 1 + δε}

≡ 2

1− εmax {1− 2δ, δ}

<
2

1− ε
. (361)

As a result, we may further bound (357) as

E
{∥∥∥xn+1 − x∗

∥∥∥2

2

}
≤ Jn+1 ≤ Σ̂no (ε)

n
+

Σ̂R (δ, ε)

nmin{(1−ε)/2,(1−ε(2δ−1))/2}

≡ Σ̂no (ε)

n
+

Σ̂R (δ, ε)

n(1−ε)/2

≤ Σ̂no (ε)

n(1−4ε)/2
+

Σ̂
2

1− ε
n(1−ε)/2

≡
Σ̂

(
no (ε) +

2

1− ε

)
n(1−ε)/2 , (362)

for every n ∈ Nno(ε). �
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